中国激光, 2022, 49 (4): 0405003, 网络出版: 2022-01-18   

基于相位板旋转排布的超快束匀滑方案 下载: 674次

Ultrafast Beam Smoothing Scheme Based on Rotation Arrangement of Phase Plates
作者单位
四川大学电子信息学院,四川 成都 610065
摘要
提出了一种基于相位板旋转排布的束匀滑方案,通过在激光集束中以旋转方式排布具有旋转非对称性的相位板,为集束中各子光光束提供不同的空间相位调制,进而利用存在一定波长差的子光束在靶面的动态干涉,使得焦斑内部散斑在多方向、多维度快速扫动,从而达到在皮秒时间尺度内改善焦斑均匀性的目的。以2×2集束为例,通过建立基于相位板旋转排布的束匀滑方案物理模型,分析了相位板参数、排布方式、激光束相位畸变参数以及空间偏差对束匀滑效果的影响。结果表明,在基于相位板旋转排布的束匀滑方案中,仅需同时加工多套参数相同的相位板,即可降低相位板的设计、加工难度。此外,该方案的束匀滑效果受激光束相位畸变、相位板排布方式以及空间偏差的影响较小。
Abstract
Objective

In the inertial confinement nuclear fusion (ICF) facility, the non-uniformity of the target plane irradiation aggravates the instability of various laser plasmas such as magnification into filaments, stimulated Raman scattering, and stimulated Brillouin scattering, and destroys the target pellet symmetry of compression. In order to improve the irradiation uniformity of the target plane, researchers have successively developed a variety of beam smoothing schemes, such as radial smoothing (RS), azimuthal smoothing (AS), dynamic interference smoothing, and the combination of induced spatial incoherence(ISI) and lens array(LA) based on broadband light proposed by Shanghai Institute of Laser Plasma. However, these schemes have some shortcomings. Therefore, there is an urgent need to further develop a more feasible ultrafast beam smoothing scheme with a picosecond time scale.

Methods

Taking the 2×2 beam as an example, by establishing a physical model of the ultrafast beam smoothing scheme based on the rotation arrangement of phase plates, the effects of parameters of phase plates, beam arrangement, spatial wavefront distortion, and spatial deviation of laser beams on beam smoothing are analyzed.

Results and Discussions

Through calculation and simulation, the effects of parameters of phase plates, beam arrangement, spatial wavefront distortion, and spatial deviation of laser beams on beam smoothing are first investigated, the smoothing effect when the scheme is combined with the traditional beam smoothing scheme is then analyzed, and finally the influence of spatial deviation in the actual system on beam smoothing is studied. The simulation results show that when the peak valley (PV) value of the phase plate is 2λ3λ, it can not only ensure the beam smoothing effect of the scheme, but also avoid the excessive energy loss caused by wavefront distortion (Fig. 4). In addition, changing the arrangement of phase plates has little effect on the smoothing effect of the scheme (Fig. 5). When the PV value of phase distortion does not exceed 3λ, the scheme can show a better smoothing effect, and at the same time, the energy utilization rate of continuous phase plate (CPP) is less reduced (Fig. 6). Moreover, the combination of beam smoothing schemes based on the rotation arrangement of phase plates and smoothing by two-dimension spectral dispersion(2D-SSD) can further improve the smoothing effect of the target plane (Fig. 7). Finally, this scheme also has a large tolerance for spatial deviation (Fig. 8).

Conclusions

This paper proposes an ultrafast beam smoothing scheme based on the rotation arrangement of phase plates. By rotationally arranging the phase plates with a rotational asymmetric distribution in the laser quad, different spatial phase modulations are first provided for each sub-beam in the laser quad. Then the dynamic interference of the sub-beams with a certain wavelength difference on the target plane makes the speckles within the focal spot sweep rapidly in multiple directions and multiple dimensions, so as to achieve the goal of improving the uniformity of the focal spot in the picosecond time scale. On this basis, the effects of parameters of phase plates, beam arrangement, spatial wavefront distortion, and spatial deviation of laser beams on beam smoothing are analyzed. The results show that in the ultrafast beam smoothing scheme based on the rotation arrangement of phase plates, only the same phase plates with a rotational asymmetric distribution are required to be processed at the same time, which can lower the design and processing difficulty of phase plates. In addition, this scheme is little affected by spatial wavefront distortion, beam arrangement, and spatial deviation of laser beams. Combining the beam smoothing scheme based on the rotation arrangement of phase plates proposed in this paper with the traditional beam smoothing schemes can significantly improve the uniformity of focal spots within a few picoseconds, which can be an effective supplement to the traditional beam smoothing schemes.

1 引言

在惯性约束核聚变(Inertial Confinement Fusion,ICF)装置中,靶面辐照非均匀性会加剧放大成丝、受激拉曼散射、受激布里渊散射等多种激光等离子体的不稳定性,并破坏靶丸的压缩对称性[1-3]。为了提高靶面的辐照均匀性,人们相继发展了多种束匀滑方案,如随机相位板(Random Phase Plate,RPP)、连续相位板(Continuous Phase Plate,CPP)、透镜列阵(Lens Array,LA)等空域匀滑技术[4-6],诱导空间非相干(Induced Spatial Incoherence,ISI)、光谱色散平滑(Smoothing by Spectral Dispersion, SSD)等时域匀滑技术[7-8]以及偏振匀滑[9-10](Polarization Smoothing,PS)技术。其中,连续相位板(CPP)作为一种纯相位元件,理论上具有接近100%的衍射效率,可以有效地控制远场强度包络,从而达到平滑远场大尺度不均匀性的目的[11-12]。然而,激光束的高相干性会使焦斑内部产生大量散斑,从而引起小尺度不均匀性,进而引发激光与等离子体相互作用过程中各种非线性效应的产生[13]。为了抑制散斑的影响,需要采用时域匀滑技术实现靶面光场分布的快速变化,进而从时间平均的意义上改善激光束光斑品质。光谱色散平滑(SSD)是目前国际上主流的时域束匀滑技术,其原理是借助电光调制晶体对激光束进行相位调制,再使相位调制脉冲通过光栅衍射,从而引入时空耦合的正弦型相位调制,最终实现焦斑内部散斑的快速扫动[14]。在SSD技术中,由于受电光调制晶体调制频率的限制,靶面焦斑的均匀性需要几十皮秒才能达到稳定状态,这个时间远大于流体动力学和激光等离子体不稳定性的特征时间[15]。为了更快速地改善焦斑的均匀性,研究人员提出了多种超快束匀滑方案[16-19],如径向匀滑[20](Radial Smoothing,RS)、角向匀滑[21](Azimuthal Smoothing,AS)和动态干涉匀滑[22]等皮秒量级的超快束匀滑方案,以及基于宽带光的诱导空间非相干(Induced Spatial Incoherence,ISI)与透镜阵列(Lens Array,LA)联用方案[23]。这些超快束匀滑方案均可实现靶面光场皮秒或亚皮秒量级的快速变化,从而在极短时间内改善激光束光斑品质。然而,RS方案需要高能量周期性皮秒脉冲串作为泵浦光[24],AS方案的束匀滑效果有限[22],而动态干涉匀滑方案对共轭相位板的加工要求比较高[25]。因此,亟须进一步发展更具可行性的皮秒量级时间尺度的超快速束匀滑方案。

本文提出了一种基于相位板旋转(Phase Plate Rotation,PPR)排布的超快束匀滑方案。该方案使用4块完全相同且具有旋转非对称性的相位板,针对激光集束中的不同子束,将相位板以不同角度旋转排布,进而借助其旋转非对称性为各个子束附加不同的相位调制,在各子束之间存在一定波长差的前提下,利用不同子束的动态干涉使得焦斑内部的散斑快速扫动,从而在皮秒量级时间尺度内改善靶面的辐照均匀性。本文以典型惯性约束聚变装置中的2×2激光集束为例,通过建立相关物理模型,计算模拟了该方案的束匀滑特性,进而分析了相位板参数、相位板排布方式、激光束相位畸变以及空间偏差等对束匀滑效果的影响。

2 理论模型

图1中,各子束依次经过连续相位板(CPP)、相位板(PP)和偏振控制板(PCP),最后由楔形透镜聚焦到靶面上。其中,4块完全相同且具有旋转非对称性的相位板旋转不同角度,排列成相位板阵列,从而使子束受到了不同的空间相位调制。由于子束间的波长差和空间相位差异,1、3和2、4两个子束对均在远场相干叠加形成随时间快速变化的干涉图样,从而实现焦斑内部散斑的快速、无序扫动,进而在数皮秒时间内改善了激光束光斑品质。在本方案中,由于集束中子束之间频率差的存在以及空间相位的不同,靶面光斑在皮秒时间尺度内呈现规律性的动态变化,这种变化实际上是由子束之间的拍频引起的,拍频的周期与子束之间的波长差有关。设计具有不同面形的相位板,如倾斜相位板、离轴椭球面相位板以及离轴螺旋相位板,可以使集束焦斑内部的散斑发生不同维度、方向的快速扫动,从而在皮秒量级的时间尺度内实现靶面光场的多方向匀滑。

图 1. 基于相位板旋转排布的超快束匀滑方案

Fig. 1. Ultrafast beam smoothing scheme based on rotation arrangement of phase plates

下载图片 查看所有图片

假设激光集束中的子束为具有振幅调制和相位畸变的超高斯光束[26],其近场光场分布可表示为 Ej(xyt)A0[1σ(xy)]exp[(x2Nwx2Ny2Nwy2N)]exp(iφrandom)exp(iωjt)式中:Ej(x, y, t)是第j个子束的近场振幅,j = 1,2,3,4;A0是归一化振幅;ωj是子束j的角频率;(xy)是近场的空间坐标;t为时间;σ(x, y)是近场振幅调制;wxwy近场激光束1/e束腰半径;N是激光束的超高斯阶数;φrandom(x, y)是高斯随机相位分布,可以用高斯随机相位屏模拟[27-28]

于是,各子束在靶面的光场分布可以用Collins公式进行计算: Ezj(xzyzt)1iλj'fexp(ikj'z)Ej(xyt)×exp{i[φj(xy)φCPP(xy)]}×exp[ikj'f(xxzyyz)]dxdy式中:Ezj(xzyzt) 为子束j在远场的光场分布;(xzyz)为对应远场的空间坐标;φj(xy) 为各子束对应的相位板附加的相位调制;φCPP(xy)是CPP附加的相位;λj'是倍频后子束j的中心波长;kj'是倍频后子束j的波数;f是楔形透镜的焦距;z是楔形透镜前焦面到后焦面的距离,其值为2f

由于各子束之间存在一定的波长差且相位分布存在差异,不同子束在焦面的光强分布通过拍频效应随时间发生快速变化,其变化周期可以表示为 T2πΔω132π2πcλ32πcλ1λ1λ3c(λ1λ3)λ2cΔλ13式中:λ1λ3分别是子束1、子束3的中心波长;c是光速;Δω1,3和Δλ1,3分别是子束1和子束3之间的频率差和波长差;λ是激光束的中心波长。(3)式表明,子束的波长差和中心波长共同影响靶面光强的变化周期。

子光束对的动态干涉将引起靶面光斑内部散斑在不同方向发生快速扫动,从而达到在皮秒时间内改善激光束光斑品质的目的。因此,Δt积分时间内的焦面时间平均光强可表示为 I1Δt0Δt(|Ez1Ez3|2|Ez2Ez4|2)dt

3 束匀滑效果分析

在计算模拟时,主激光束参数为:1、2子束倍频后的波长λ1'=λ2'= 351 nm,3、4子束倍频后的波长λ3'=λ4'=351.3 nm。各子束的束腰宽度 wxwy=186 mm,超高斯阶数为N=7,楔形透镜的焦距为f=7.7 m,积分时间Δt=10 ps。2D-SSD参数为:调制深度δ=2.4,调制频率νm=17 GHz,总带宽约为0.3 nm,光栅色散系数为 2156.8 μrad/nm[29]φrandom中的低频分量比例(σl)和高频分量的比例(σh)分别为0.06、0.02。采用光通量对比度(Contrast)和FOPAI (Fractional Power Above Intensity)对焦斑的均匀性进行定量表征[30]

3.2 焦斑特性分析

以倾斜相位板、离轴椭球面相位板和离轴螺旋相位板为例,图2给出了相位板旋转排布束匀滑方案的焦面动态干涉图样。

图 2. 不同相位板旋转后的焦面动态干涉图样

Fig. 2. Dynamic interference patterns on focal plane after rotation of different phase plates

下载图片 查看所有图片

图2中可以看出,旋转相位板可使不同子束的相位分布存在差异,子光束对发生干涉叠加后,焦斑形态随时间快速变化。通过旋转不同类型的相位板,可实现焦斑形态的不同变化。其中,旋转排布倾斜相位板和离轴椭球面相位板后,其焦斑将会在水平(垂直)方向发生扫动,而旋转排布离轴螺旋相位板后,焦斑发生径向和角向的运动。图3给出了不同匀滑方案的焦斑分布比较,积分时间为10 ps。

图 3. 不同匀滑方案的焦斑光强分布。(a)2D-SSD + CPP;(b)PPR + CPP;(c)2D-SSD + PPR + CPP

Fig. 3. Focal spot light intensity distributions by different smoothing schemes. (a) 2D-SSD + CPP; (b) PPR+ CPP; (c) 2D-SSD + PPR + CPP

下载图片 查看所有图片

图3(a)和图3(b)可以看出,2D-SSD和相位板旋转排布束匀滑方案均能有效改善焦斑均匀性,但由于光栅的色散作用,2D-SSD的焦斑内部存在明显的条纹状强度调制。进一步分析图3(c)可知,当两种方案联用时,相位板旋转排布束匀滑方案会使焦斑在靶面快速扫动,可以有效地抑制由2D-SSD形成的条纹状强度调制,从而进一步改善激光束的光斑品质。

3.3 基于相位板旋转排布的超快束匀滑特性分析

本小节我们讨论相位板参数、相位板排布方式、激光束相位畸变对束匀滑效果的影响,以及本方案与传统束匀滑方案联用时的匀滑效果,最后计算实际系统中的空间偏差对束匀滑效果的影响。

3.3.2 相位板参数的影响

图4(a)给出了在使用不同类型相位板阵列时,焦斑光通量对比度随相位板的相位峰谷(Peak Valley,PV)值的变化曲线,图4(b)和图4(c)分别给出了在采用离轴椭球面相位板和离轴螺旋相位板时,焦斑光通量对比度随离轴量的变化曲线,图4(d)则给出了采用离轴椭球面相位板时桶中功率的变化曲线。在计算中,图4(a)中离轴椭球面相位板和离轴螺旋相位板离轴量的取值为0.5,其中,离轴相位板的离轴量(Deviation)定义为几何中心偏移距离与相位板半宽的比值。

图 4. 相位板的参数对束匀滑效果的影响。(a)不同类型相位板阵列的光通量对比度随相位板PV值的变化曲线;在不同相位板PV值下,(b)离轴椭球面相位板和(c)离轴螺旋相位板的匀滑效果与偏移量的关系曲线;(d)离轴椭球面相位板的桶中功率曲线

Fig. 4. Influences of parameters of phase plate on beam smoothing effect. (a) Contrast of every type of phase plate array versus PV value of phase plate; smoothing effects of (b) off-axis ellipsoidal phase plate and (c) off-axis spiral phase plate versus deviation under different PV values; (d) power in bucket of off-axis ellipsoidal phase plate

下载图片 查看所有图片

图4(a)中可以看出,在一定范围内,随着相位板PV值的增大,焦斑光通量对比度逐渐下降,焦斑均匀性得到改善。这是由于相位板PV值决定了焦斑内部散斑的扫动范围,在一定范围内相位板PV值越大,散斑扫动范围越大,因此束匀滑效果越好。分析图4(b)、(c)可知,随着离轴量的增大,焦斑光通量对比度不断降低直至趋于稳定,且相位板离轴量越大,焦斑达到最佳均匀性所需的PV值越小,反之亦然。这是由于离轴相位板的离轴量决定了相位板的旋转非对称性,因此离轴相位板的离轴量与PV值共同决定了子束相位分布,从而决定了焦斑内部散斑的扫动范围和最终的束匀滑效果。由图4(d)中的桶中功率(Power in Bucket,PIB)曲线可知,相位板PV值过大会导致激光束波前失真[31],而波前失真则会改变焦斑的形貌,从而导致桶中功率的下降。因此,当PV值为2λ~3λ时,既能保证该方案的束匀滑效果,同时可以避免波前失真带来过多的能量损失。值得指出的是,该方案中的相位板仅要求具有合适的PV值且具有一定的旋转非对称性,对其面形分布无特殊要求,从而降低了对相位元件的加工要求。

3.3.3 相位板排布方式的影响

图5给出了不同类型相位板在不同的排布方式下,光通量对比度随时间的变化曲线,其中,0°、90°、180°、270°分别代表集束的四个子束所对应的相位板的旋转角度。

图 5. 不同类型相位板阵列在不同排布方式下的光通量对比度曲线。(a)倾斜相位板;(b)离轴椭球面相位板;(c)离轴螺旋相位板

Fig. 5. Contrasts of every type of phase plate array under different arrangement patterns. (a) Tilted phase plate; (b) off-axis ellipsoidal phase plate; (c) off-axis spiral phase plate

下载图片 查看所有图片

图5(a)、(b)中可以看出,对于倾斜相位板和离轴椭球面相位板,不同相位板旋转角度组合下的焦斑光通量对比度随时间的变化曲线基本重合。进一步分析图5(c)可知,当采用离轴螺旋相位板时,相位板组合方式对焦斑光通量对比度曲线存在一定影响,但这种相位板组合方式引起的光通量对比度曲线的变化较小,且最终稳定时的焦斑光通量对比度并没有明显差异。由此可见,改变相位板的排布方式对该方案的匀滑效果的影响较小。

3.3.4 激光相位畸变的影响

图6(a)给出了10 ps积分时间内焦斑光通量对比度随波前相位畸变PV值的变化曲线,图6(b)、(c)则分别给出了不同波前相位畸变PV值下,使用倾斜相位板时光通量对比度随时间的变化曲线和桶中功率随桶半径的变化曲线。

图 6. 激光束相位畸变对束匀滑效果的影响。(a)光通量对比度随波前相位畸变PV值的变化曲线(积分时间为10 ps);(b)不同相位畸变PV值下光通量对比度随时间的变化曲线;(c)桶中功率的变化曲线

Fig. 6. Influence of phase distortion of laser beam on beam smoothing effect. (a) Contrast versus PV value of wavefront phase distortion(integration time of 10 ps); (b) contrast versus time under different phase distortion PV values of phase distortion; (c) power in bucket

下载图片 查看所有图片

图6(a)可以看出,随着相位畸变PV值的增大,积分焦斑的光通量对比度几乎不发生变化,且不同相位板的焦斑光通量对比度曲线基本重合。分析图6(b)可知,相位畸变对焦斑的时域匀滑特性以及焦斑的束匀滑效果的影响较小,即随着相位畸变PV值的增大,焦斑的光通量对比度仅在一个很小的范围内波动。进一步分析图6(c)可知,当相位畸变的PV值达到4λ后,靶面焦斑的桶中功率会大幅度下降。分析其原因可知,子束拍频引起的焦斑内部散斑的快速、无序扫动可有效降低激光束相位畸变对焦斑辐照均匀性的影响,但相位畸变PV值过大时,波前失真会导致较大的能量损失。由此可见,当激光束相位畸变的PV值不超过3λ时,该方案表现出较好的匀滑效果,同时,CPP能量利用率的下降较小。

3.3.5 与传统束匀滑方案的联用

以倾斜相位板为例,图7给出了相位板旋转排布束匀滑方案、2D-SSD以及二者联用时的光通量对比度和FOPAI曲线。其中,倾斜相位板的PV值为1.5λ,束间波长差为0.3 nm,相应的动态干涉图样的变化周期T约为1.4 ps,I0表示平均光强。

图 7. 不同方案的束匀滑效果。(a)光通量对比度曲线;(b)FOPAI曲线

Fig. 7. Beam smoothing effects of different schemes. (a) Contrast curves; (b) FOPAI curves

下载图片 查看所有图片

图7(a)可以看出,采用相位板旋转排布束匀滑方案可使焦斑的光通量对比度在极短时间内迅速下降,随后保持稳定,而2D-SSD的焦斑光通量对比度的下降较为缓慢,达到稳定状态所需的时间较长。相比于传统的2D-SSD方案,相位板旋转排布束匀滑方案的焦斑匀滑速率更快,可在极短时间内改善激光束的光斑品质,但最终达到稳定时的焦斑均匀性相对较差。然而,当相位板旋转排布束匀滑方案与2D-SSD联用时,焦斑光通量对比度能够在较短的积分时间内下降到更低值。进一步分析图7(b)可知,当相位板旋转排布束匀滑方案与2D-SSD联用时,FOPAI曲线对比二者单独使用时明显左移,表明二者联用时能够显著减小焦斑内部的热斑比例,使靶面光场匀滑效果得到进一步改善。

3.3.6 空间偏差的影响

为了研究相位板旋转排布方案对子束近、远场的空间偏差的容限,本节讨论了激光束入射到相位元件时的空间偏差以及子光束焦斑在靶面的重合程度对束匀滑效果的影响。图8(a)为在采用离轴椭球面相位板的情况下,靶面焦斑的光通量对比度随激光束入射到相位元件时的空间偏差的变化曲线,图8(b)则绘制了10 ps积分时间下焦斑光通量对比度随子光束焦斑重合程度的变化曲线。在图8(a)中,离轴椭球面相位板的离轴量为0.5,PV值为4λ,偏差量(Offset )定义为激光束几何中心偏移距离与激光束半宽的比值,图注表示两束激光的偏移情况,hv代表两束激光分别在水平方向、垂直方向的偏移,+、-则代表偏移方向,0代表无偏移;图8(b)中的重合程度(Overlap)定义为焦斑偏移距离与焦斑尺寸的比值。

图 8. 空间偏差对束匀滑效果的影响。(a)激光束入射到相位元件时的空间偏差对束匀滑效果的影响;(b)子光束焦斑重合程度对束匀滑效果的影响

Fig. 8. Influences of spatial deviation on beam smoothing effect. (a) Influence of spatial deviation on beam smoothing effect for laser beam incident on phase element; (b) influence of coincidence degree of sub-beam focal spots on beam smoothing effect

下载图片 查看所有图片

图8(a)中可以看出,激光束入射到相位元件的空间偏差对束匀滑效果的影响较小,不同偏移情况下靶面焦斑的光通量对比度的波动变化不大,特别是在激光束入射到相位元件时空间偏差量小于0.4的条件下,空间偏差对束匀滑效果的影响几乎可以忽略。这表明相位板旋转排布方案对激光束入射到相位元件时的空间偏差有较大容限。分析图8(b)可知,随着子光束焦斑重合程度的减小,靶面焦斑的光通量对比度逐渐增大,并且当偏移量小于0.2时,该方案的匀滑效果与理想情况偏差较小。由此可见,相位板旋转排布方案对激光集束不同子束的焦斑重合误差也有较大容限。需要指出的是,在ICF系统中一般采用离轴透镜或非离轴透镜来实现子光束焦斑的重合。例如,美国国家点火装置采用成对的一维离轴透镜将平行光束会聚到同一点,并使用反射镜对入射光束的角度进行一定的调整[32]

4 结论

提出了一种基于相位板旋转排布的超快束匀滑方案。该方案通过在激光集束中针对不同子束以不同角度旋转具有旋转非对称性的相位板,对存在一定波长差的子束进行不同的空间相位调制,进而利用各子光束在靶面的动态干涉,使得焦斑内部散斑在多方向、多维度快速扫动,从而达到在皮秒时间尺度内改善焦斑均匀性的目的。在此基础上,讨论了相位板参数、排布方式、激光束相位畸变以及空间偏差等对束匀滑效果的影响。结果表明,该方案仅需同时加工多套参数相同且具有旋转非对称性的相位板,对相位板面形分布无特殊要求,从而极大地降低了相位板的设计、加工难度。此外,该方案对相位板排布方式、激光波前相位畸变以及空间偏差具有一定的容限,进一步降低了对相位板的加工精度和一致性的要求。将所提相位板旋转排布束匀滑方案与传统束匀滑方案联用,能够在数皮秒时间范围内明显改善焦斑均匀性,可以作为传统束匀滑方案的有效补充。

参考文献

[1] Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Physics of Plasmas, 2004, 11(2): 339-491.

[2] Moses E I. Ignition on the National Ignition Facility: a path towards inertial fusion energy[J]. Nuclear Fusion, 2009, 49(10): 104022.

[3] Spaeth M L, Manes K R, Kalantar D H, et al. Description of the NIF laser[J]. Fusion Science and Technology, 2016, 69(1): 25-145.

[4] Rose H A, DuBois D F. Statistical properties of laser hot spots produced by a random phase plate[J]. Physics of Fluids B: Plasma Physics, 1993, 5(2): 590-596.

[5] Marozas J A. Fourier transform-based continuous phase-plate design technique: a high-pass phase-plate design as an application for OMEGA and the National Ignition Facility[J]. Journal of the Optical Society of America A, 2007, 24(1): 74-83.

[6] Deng X M, Liang X C, Chen Z Z, et al. Uniform illumination of large targets using a lens array[J]. Applied Optics, 1986, 25(3): 377-381.

[7] Lehmberg R H, Obenschain S P. Use of induced spatial incoherence for uniform illumination of laser fusion targets[J]. Optics Communications, 1983, 46(1): 27-31.

[8] Jiang Y E, Li X C, Zhou S L, et al. Microwave resonant electro-optic bulk phase modulator for two-dimensional smoothing by spectral dispersion in SG-II[J]. Chinese Optics Letters, 2013, 11(5): 052301.

[9] Boehly T R, Smalyuk V A, Meyerhofer D D, et al. Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser[J]. Journal of Applied Physics, 1999, 85(7): 3444-3447.

[10] Munro D H, Dixit S N, Langdon A B, et al. Polarization smoothing in a convergent beam[J]. Applied Optics, 2004, 43(36): 6639-6647.

[11] Néauport J, Ribeyre X, Daurios J, et al. Design and optical characterization of a large continuous phase plate for laser integration line and laser megajoule facilities[J]. Applied Optics, 2003, 42(13): 2377-2382.

[12] Williams E A. On the control of filamentation of intense laser beams propagating in underdense plasma[J]. Physics of Plasmas, 2006, 13(5): 056310.

[13] Desselberger M, Willi O. Measurement and analysis of Rayleigh-Taylor instability in targets driven by incoherent laser radiation[J]. Physics of Fluids B: Plasma Physics, 1993, 5(3): 896-909.

[14] Rothenberg J E, Auerbach J M, Moran B D, et al. Implementation of smoothing by spectral dispersion on Beamlet and NIF[J]. Proceedings of SPIE, 1999, 3492: 970-979.

[15] 钟哲强, 张彬. 基于双频光源和涡旋相位的互补旋转集束匀滑方案[J]. 强激光与粒子束, 2020, 32(1): 71-78.

    Zhong Z Q, Zhang B. Conjugate rotation smoothing scheme for laser quad based on dual-frequency laser and spiral phase plate[J]. High Power Laser and Particle Beams, 2020, 32(1): 71-78.

[16] 李福建, 高妍琦, 赵晓晖, 等. 诱导空间非相干束匀滑技术的近区特性及改善技术[J]. 物理学报, 2018, 67(17): 175201.

    Li F J, Gao Y Q, Zhao X H, et al. Near-field character and improvement technology of induced spatial incoherence[J]. Acta Physica Sinica, 2018, 67(17): 175201.

[17] Zhou Y Q, Fu W X, Zheng T R, et al. Phase smoothing and polarisation-phase synchronous smoothing based on liquid crystal Pancharatnam-Berry phase devices[J]. Liquid Crystals, 2021, 48(1): 150-156.

[18] 唐一凡. 高功率钕玻璃激光器光束匀滑技术研究[D]. 广州:广东工业大学,2017.

    TangY F. Research on beam smoothing technology of high power Nd: glass laser[D]. Guangzhou: Guangdong University of Technology, 2017.

[19] 李秀文. 基于组合相位板的靶面束匀滑技术研究[D]. 成都:西南交通大学,2014.

    LiX W. Research of beam smoothing on target based on multiple phase plates[D]. Chengdu: Southwest Jiaotong University, 2014.

[20] Zhong Z Q, Hou P C, Zhang B. Radial smoothing for improving laser-beam irradiance uniformity[J]. Optics Letters, 2015, 40(24): 5850-5853.

[21] Zhong Z Q, Yi M Y, Sui Z, et al. Ultrafast smoothing scheme for improving illumination uniformities of laser quads[J]. Optics Letters, 2018, 43(14): 3285-3288.

[22] Zhong Z Q, Sui Z, Zhang B, et al. Improvement of irradiation uniformity by dynamic interference structures of laser array in inertial-confinement-fusion facilities[J]. Optics Communications, 2020, 455: 124558.

[23] Zhao X H, Gao Y Q, Li FJ, et al. Beam smoothing by a diffraction-weakened lens array combining with induced spatial incoherence[J]. Applied Optics, 2019, 58(8): 2121-2126.

[24] 李腾飞, 钟哲强, 张彬. 用于超快束匀滑的动态波前调控新方案[J]. 物理学报, 2018, 67(17): 174206.

    Li T F, Zhong Z Q, Zhang B. Novel dynamic wavefront control scheme for ultra-fast beam smoothing[J]. Acta Physica Sinica, 2018, 67(17): 174206.

[25] 潘雪涛. 飞秒激光微加工质量优化的若干问题研究[D]. 上海:上海大学,2017.

    PanX T. The research on some problems of quality optimization in femtosecond laser micromachining[D]. Shanghai: Shanghai University, 2017.

[26] Haynam C A, Wegner P J, Auerbach J M, et al. National Ignition Facility laser performance status[J]. Applied Optics, 2007, 46(16): 3276-3303.

[27] 粟敬钦, 魏晓峰, 马驰, 等. 激光束低频畸变波前模型的计算模拟[J]. 强激光与粒子束, 2000, 12(S2): 163-166.

    Su J Q, Wei X F, Ma C, et al. Simulation on the model of low frequency distorted wavefront of laser beam[J]. High Power Laser & Particle Beams, 2000, 12(S2): 163-166.

[28] 张蓉竹, 杨春林. 高功率激光系统随机相位屏的特性研究[J]. 强激光与粒子束, 2007, 19(8): 1242-1246.

    Zhang R Z, Yang C L. Characteristics of random phase screen used in high power laser system[J]. High Power Laser and Particle Beams, 2007, 19(8): 1242-1246.

[29] Skupsky S, Short R W, Kessler T, et al. Improved laser-beam uniformity using the angular dispersion of frequency-modulated light[J]. Journal of Applied Physics, 1989, 66(8): 3456-3462.

[30] 黄媛, 张寅瑞, 钟哲强, 等. 基于涡旋圆偏振光干涉的偏振快速旋转束匀滑方案[J]. 中国激光, 2020, 47(9): 0905003.

    Huang Y, Zhang Y R, Zhong Z Q, et al. Rapid polarization rotation smoothing scheme based on interference of circularly polarized vortex beamlets[J]. Chinese Journal of Lasers, 2020, 47(9): 0905003.

[31] 温圣林, 颜浩, 张远航, 等. 波前畸变下连续相位板焦斑的计算与实验[J]. 光学学报, 2014, 34(3): 0314001.

    Wen S L, Yan H, Zhang Y H, et al. Calculation and experiment of the focal spot caused by continuous phase plate with incident wavefront distortion[J]. Acta Optica Sinica, 2014, 34(3): 0314001.

[32] 雷泽民, 孙晓艳, 卢兴强. 非离轴楔形透镜2×2集束聚焦系统的误差分析[J]. 中国激光, 2017, 44(5): 0505001.

    Lei Z M, Sun X Y, Lu X Q. Error analysis of 2×2 beam array focus system with non-off-axis wedged lenses[J]. Chinese Journal of Lasers, 2017, 44(5): 0505001.

邹冬岩, 熊皓, 钟哲强, 张彬. 基于相位板旋转排布的超快束匀滑方案[J]. 中国激光, 2022, 49(4): 0405003. Dongyan Zou, Hao Xiong, Zheqiang Zhong, Bin Zhang. Ultrafast Beam Smoothing Scheme Based on Rotation Arrangement of Phase Plates[J]. Chinese Journal of Lasers, 2022, 49(4): 0405003.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!