光学学报, 2017, 37 (5): 0511002, 网络出版: 2017-05-05   

光学相干层析成像随深度变化的色散补偿方法 下载: 577次

Depth-Dependent Dispersion Compensation for Optical Coherence Tomography
作者单位
1 中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800
2 中国科学院大学, 北京 100049
3 江南大学理学院, 江苏 无锡 214122
摘要
提出一种随深度变化的色散补偿方法, 用以提升频域光学相干层析成像系统的纵向分辨率。该方法利用迭代算法计算出不同成像深度处的色散补偿系数, 通过数值计算, 得到色散补偿系数与成像深度的关系表达式, 计算出各成像深度处的色散补偿系数, 利用这些色散补偿系数消除相应深度位置处信号的高阶色散相位, 从而有针对性地对系统中参考臂与样品臂的色散失配进行补偿, 消除色散的展宽效应。理论推导和实验结果表明, 光学相干层析成像系统中, 随深度变化的色散补偿方法对各成像深度位置处的信号, 包括成像深度较深位置处的弱信号, 均可以进行有效的色散补偿, 进而得到更多的样品结构信息。
Abstract
A depth-dependent dispersion compensation method is presented to enhance the axial resolution in Fourier-domain optical coherence tomography. The dispersion compensation coefficients at different depths are calculated by an iterative algorithm, and a mathematical expression between the dispersion compensation coefficient and depth is obtained through numerical calculation. From the mathematical expression, the dispersion compensation coefficients at different depths are calculated to eliminate the high-order dispersion phase at different depths. The dispersion mismatch between the reference arm and sample arm is compensated and the broadening effect of dispersion is avoided. Theoretical derivation and experimental results in the optical coherence tomography systems show that the dispersion at different depths, including the deeper positions which have weaker signals, is effectively compensated by the depth-dependent dispersion compensation method and thus more structure informations of the sample are obtained.
参考文献

[1] 郭 昕, 王向朝, 步 鹏, 等. 样品散射对频域光学相干层析成像光谱形状和深度分辨率的影响[J]. 光学学报, 2014, 34(1): 0117001.

    Guo Xin, Wang Xiangzhao, Bu Peng, et al. Effects of scattering on spectral shape and depth resolution in Fourier domain optical coherence tomography[J]. Acta Optica Sinica, 2014, 34(1): 0117001.

[2] 南 楠, 步 鹏, 郭 昕, 等. 三维全深度复频域光学相干层析成像系统及其对人体皮肤的在体成像[J]. 中国激光, 2012, 39(7): 0704002.

    Nan Nan, Bu Peng, Guo Xin, et al. Three-dimensional full-range complex Fourier domain optical coherence tomography system for vivo imaging of human skin[J]. Chinese J Lasers, 2012, 39(7): 0704002.

[3] Huang D, Swanson E A, Lin C P, et al. Optical coherence tomography[J]. Science, 1991, 254 (5035): 1178-1181.

[4] Srinivasan V J, Wojtkowski M, Fujimoto J G, et al. In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography[J]. Opt Lett, 2006, 31 (15): 2308-2310.

[5] Wen X, Jacques S L, Tuchin V V, et al. Enhanced optical clearing of skin in vivo and optical coherence tomography in-depth imaging[J]. J Biomed Opt, 2012, 17(6): 066022.

[6] Liu L B, Gardecki J A, Nadkarni S K, et al. Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography[J]. Nat Med, 2011, 17 (8): 1010-1014.

[7] Unterhuber A, Povazay B, Hermann B, et al. Compact, low-cost Ti: Al2O3 laser for in vivo ultrahigh-resolution optical coherence tomography[J]. Opt Lett, 2003, 28(11): 905-907.

[8] Povazay B, Bizheva K, Unterhuber A, et al. Submicrometer axial resolution optical coherence tomography[J]. Opt Lett, 2002, 27(20): 1800-1802.

[9] Drexler W, Morgner U, Krtner F X, et al. In vivo ultrahigh-resolution optical coherence tomography[J]. Opt Lett, 1999, 24(17): 1221-1223.

[10] Froehly L, Furfaro L, Sandoz P, et al. Dispersion compensation properties of grating-based temporal-correlation optical coherence tomography systems[J]. Opt Commun, 2009, 282(7): 1488-1495.

[11] Rosa C C, Rogers and Podoleanu A G. Fast scanning transmissive delay line for optical coherence tomography[J]. Opt Lett, 2005, 30(24): 3263-3265.

[12] Fercher A F, Hitzenberger C K, Sticker M, et al. Numerical dispersion compensation for Partial Coherence Interferometry and Optical Coherence Tomography[J]. Opt Express, 2001, 9 (12): 610-615.

[13] 黄炳杰, 步 鹏, 王向朝, 等. 用于频域光学相干层析成像的深度分辨色散补偿方法[J]. 光学学报, 2012, 32(2): 0217002.

    Huang Bingjie, Bu Peng, Wang Xiangzhao, et al. Optical coherence tomography based on depth resolved disopersion compensation[J]. Acta Optica Sinica, 2012, 32(2): 0217002.

[14] Marks D L, Oldenburg A L, Reynolds J J, et al. Autofocus algorithm for dispersion correction in optical coherence tomography[J]. Appl Optics, 2003, 42(16): 3038-3046.

[15] Wojtkowski M, Srinivasan V J, Ko T H, et al. Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation[J]. Opt Express, 2004, 12(11): 2404-2422.

[16] Diddams S and Diels J C. Dispersion measurements with white-light interferometry[J]. J Opt Soc Am B, 1996, 13(6): 1120-1129.

[17] Fujimoto J G. Optical coherence tomography for ultrahigh resolution in vivo imaging[J]. Nat Biotechnol, 2003, 21(11): 1361-1367.

潘柳华, 李中梁, 王向朝, 张向阳, 南楠, 陈艳, 王瑄, 卢宇. 光学相干层析成像随深度变化的色散补偿方法[J]. 光学学报, 2017, 37(5): 0511002. Pan Liuhua, Li Zhongliang, Wang Xiangzhao, Zhang Xiangyang, Nan Nan, Chen Yan, Wang Xuan, Lu Yu. Depth-Dependent Dispersion Compensation for Optical Coherence Tomography[J]. Acta Optica Sinica, 2017, 37(5): 0511002.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!