中国激光, 2001, 28 (5): 421, 网络出版: 2006-08-10  

基于交叉相位调制的孤子脉冲压缩效应研究

Soliton Pulse Compression Based on Cross-phase-modulation in Anomalous Dispersive Optical Fiber
作者单位
华南师范大学量子电子学研究所 广州 510631
摘要
在负色散区,基本孤子在光纤中传输时其波形与脉宽保持不变。提出一种在负色散区利用交叉相位调制效应压缩基本孤子脉冲的新方法。采用分步傅里叶方法对非线性耦合方程进行了数值计算与模拟。研究了不同抽运功率、不同抽运脉冲啁啾参数以及不同脉宽对基本孤子脉冲压缩的影响。发现基本孤子脉冲不仅能够被压缩,而且光纤存在最佳压缩长度。在抽运功率一定的条件下,选取负啁啾的抽运脉冲,可获得更高压缩比的压缩光脉冲。另外,不同的脉冲宽度对孤子脉冲的压缩产生较大的影响,一般情况下,选用较窄的抽运脉冲易于产生较短的压缩光脉冲。
Abstract
In anomalous dispersivefiber, fundamental soliton pules have the desirable property i.e. their shape and pulsewidth are invariant during propagation along the fiber. In this paper, a new method tocompress fundamental soliton pulses in the anomalous dispersion regime throughcross-phase-modulation for pump pulse and soliton pulse is proposed. Two nonlinear coupledequations were established to describe the propagation of pulses in the fiber and solvednumerically. It is found that the fundamental soliton can be compressed by using themethod of the cross-phase modulation and exists an optimum value of fiber length in thecompression. It is also found that the pump pulse power, pump frequency chirp and variouspulse widths have great effects on soliton pulse compression. In order to obtain largecompression factor, pump pulses with negative chirp and narrow pulse-width are desirableselected.
参考文献

[1] R. L. Fork, C. H. Brito Cruz, P. C. Becker et al.. Compression of optical pulses to six femtoseconds by using cubic phase compensation. Opt. Lett., 1987, 12(7):483~485

[2] A. S. Gouveia-Neto, A. S. L. Gomes, J. R. Taylor. Pulses of four optical cycles from an optimized optical fiber/grating pair/soliton pulse compressor at 1.32 μm. J. Mod. Opt., 1988, 35(1):7~10

[3] Xu Wencheng, Guo qi, Liao Changjun et al.. Femtosecond soliton compression and stabilization in fibers with slowly decreasimg dispersion. Acta Optic Sinica (光学学报), 1995, 15(2):174~179 (in Chinese)

[4] Xu Wencheng, Guo Qi, Liu Songhao. Higher-order dispersion and soliton pulse compression in the dispersion-decreasing fibers. Chin. Phys. Lett., 1997, 14(4):298~301

[5] B. A. Umarov, F. Kh. Abdullaev, M. R. B. Wahiddin. Soliton interaction and switching in a coupler with third order dispersion and Raman effect. Opt. Comm., 1999, 162:340~346

[6] Bozena Jaskorzynska, Dieter Schadt. All-fiber distributed compression of weak pulses in the regime of negative group-velocity dispersion. IEEE J. Quantum Electron., 1988, 24(10):2117~2120

[7] Govind P. Agrawal, P. L. Baldeck, R. R. Alfano. Temporal and spectral effects of cross-phase modulation on copropagating ultrashort pulses in optical fibers. Phys. Rev. A, 1989, 40(9):5063~5072

[8] Wen-hua Cao,Shenping Li, Kam-tai Chan. Generation of dark pulse trains from continuous-wave light using cross-phase modulation in optical fibers. Appl. Phys. Lett., 1999, 74(4):510~512

[9] L. Xu, N. Karasawa, N. Nakagawa et al.. Experimental generation of an ultra-broad spectrum based on induced-phase modulation in a single-mode glass fiber. Opt. Comm., 1999, 162:256~260

[10] Govind P. Agrawal. Nonlinear Fiber Optics (Second Edition). San Diego: Academic Press, 1995. 239~243

[11] Govind P. Agrawal. Nonlinear FIber Optics (Second Edition). San Diego: Academic Press, 1995. 289~292

罗爱平, 徐文成, 陈伟成, 郭旗, 刘颂豪. 基于交叉相位调制的孤子脉冲压缩效应研究[J]. 中国激光, 2001, 28(5): 421. 罗爱平, 徐文成, 陈伟成, 郭旗, 刘颂豪. Soliton Pulse Compression Based on Cross-phase-modulation in Anomalous Dispersive Optical Fiber[J]. Chinese Journal of Lasers, 2001, 28(5): 421.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!