光子学报, 2013, 42 (5): 505, 网络出版: 2013-05-22   

贝塞尔高斯涡旋光束在大气湍流中的传输特性

Propagation of BesselGaussian Beam with Optical Vortices in Turbulent Atmosphere
作者单位
南京理工大学 理学院,南京 210094
摘要
基于广义惠更斯菲涅耳原理, 推导了贝塞尔高斯涡旋光束在湍流大气中传输时系统平均光强的解析表达式, 研究了贝塞尔高斯空心涡旋光束在湍流大气中的光强传输特性, 同时分析了大气湍流的强弱、涡旋光束的拓扑荷等对光束质量的影响. 结果表明: 贝塞尔高斯涡旋光束在大气湍流中传输时, 光强分布经历几个连续的变化, 相位奇异性也会在传输过程中消失, 该过程与涡旋光束拓扑荷的数目、光束的束腰宽度以及大气湍流的强弱等因素密切相关. 拓扑荷数目高的涡旋光束在湍流大气中传输时, 其奇异性的保持较拓扑荷数目低的涡旋光束要好. 另外, 基于桶中功率理论, 分析研究了涡旋光束的拓扑荷数目、大气湍流强弱和束腰宽度对贝塞尔高斯涡旋光束在大气湍流中传输时的光束质量的影响.
Abstract
Based on the extended HuygensFresnel integral, the analytic expressions for BesselGaussian beams (BGBs) with optical vortices propagating in turbulent atmosphere are derived. The average intensity properties and the beam quality (Power in bucket) in the far field of BesselGaussian beams with optical vortices propagating in turbulent atmosphere are investigated. It is found that intensity profiles of BesselGaussian beams experienced successive variations and the phase singularity rapidly fades away during propagating in turbulent atmosphere. The process is closely related with the number of topological charge, the beam′s waist width and the strength of atmospheric turbulence. The maintenance of singularity of vortex beams with larger topological charge in turbulent atmosphere is better than that for vortex beams with smaller topological charge. In addition, based on the theory of power in bucket, the influence of topological charge, the beam′s waist width and the strength of atmospheric turbulence on the beam quality of BesselGaussian beams is explored in detail.
参考文献

[1] 丁攀峰. 整数与分数阶涡旋光束相位奇点的稳定性分析[J]. 华中科技大学学报(自然科学版), 2011, 39(5): 118-122.

    DING Panfeng. Stabilization analysis of phase singularity of vortex beams with integral and fractional orders[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2011, 39(5): 118-122.

[2] 吴慧云, 黄值河, 吴武明, 等. 高斯涡旋光束分析及其在中继镜系统中的应用[J]. 光学学报, 2011, 31(4): 175-179.

    WU Huiyun, HUANG Zhihe, WU Wuming, et al. Analysis of Gaussianvortex beam and its application in a relay mirror system[J]. Acta Optica Sinica, 2011, 31(4): 175-179.

[3] 薄斌, 门克内木乐, 赵建林, 等. 用反射式纯相位液晶空间光调制器产生涡旋光束[J]. 光电子·激光, 2012, 23(1): 74-78.

    BO Bin, MENKE Neimenle, ZHAO Jianlin, et al. Generation of vortex beams with a reflected type phase only LCSLM[J]. Journal of Optoelectronics Laser, 2012, 23(1): 74-78.

[4] TOVAR A A. Propagation of LaguerreBesselGaussian beams in turbulence[J]. JOSA A, 2000, 17: 2010-2108.

[5] 陈斐楠, 陈晶晶, 赵琦, 等. 高阶贝塞尔高斯光束在非柯尔莫哥诺夫大气中的传输特性[J].中国激光, 2012, 39(9): 0913001.

    CHEN Feinan, CHEN Jingjing, ZHAO Qi, et al. Properties of high order Bessel Gaussian beam propagation in nonKolmogorov atmosphere turbulence[J]. Chinese Journal of Lasers, 2012, 39(9): 0913001.

[6] LU X H, CHEN X M, ZHANG L, et al. High order BesselGaussian beam and its propagation properties[J]. Chinese Physics Letters, 2003, 20(12): 2155-2157.

[7] CHEN B S, CHEN Z Y, PU J X. Propagation of partially coherent Bessel Gaussian beams in turbulent atmosphere[J]. Optics and Laser Technology, 2008, 40(6): 820-827.

[8] CAI Y J, LU X. Propagation of Bessel and Bessel Gaussian beams through an unapertured or apertured misaligned paraxial optical systems[J]. Optics Communications, 2007, 274(1): 1-7.

[9] ZHU K C, ZHOU G Q, LI X G, et al. Propagation of BesselGaussian beams with optical vortices in turbulent atmosphere[J]. Optics Express, 2008, 16(26): 21315-21320.

[10] YIN J P, GAO W J, ZHU X F. Generation of dark hollow beams and their applications[J]. Progress in Optics, 2003, 45: 119-204.

[11] CAI Y J, WANG Z Y, LIN Q. An alternative theoretical model for an anomalous hollow beam[J]. Optics Express, 2008, 16(19): 15254-15267.

[12] ZHU K C, TANG H Q, GAO Y Y. A new set of flattened light beams[J]. Journal of Optics A: Pure and Applied Optics, 2002, 4(1): 33-36.

[13] ZHU K C, TANG H Q, WANG X W, et al. Flattened light beams with an axial shadow generated through superposing coshGaussian beams[J]. Optik, 2002, 113(5): 222-226.

[14] GRADSHTEYN I S, RYZHIK I M. Table of integrals, series, and products[M]. New York: Academic Press, 1980: 718-719.

[15] HE X, LU B D. Propagation of partially coherent flattopped vortex beams through nonKolmogorov atmospheric turbulence[J]. JOSA A, 2011, 28(9): 1941-1948.

[16] WU J. Propagation of a GaussianShell beam through turbulent media[J]. Journal of Modern Optics, 1990, 37(4): 671-684.

[17] CAI Y J. Propagation of various flattopped beams in a turbulent atmosphere[J]. Journal of Optics A: Pure and Applied Optics, 2006, 8(6): 537-545.

[18] EYYUBOGLU H T, BAYKAL Y, SERMUTLE E. Convergence of general beams into Gaussian intensity profiles after propagation in turbulent atmosphere[J]. Optics Communications, 2006, 265(2): 399-405.

王海燕, 陈川琳, 杜家磊, 毕小稳. 贝塞尔高斯涡旋光束在大气湍流中的传输特性[J]. 光子学报, 2013, 42(5): 505. WANG Haiyan, CHEN Chuanlin, DU Jialei, BI Xiaowen. Propagation of BesselGaussian Beam with Optical Vortices in Turbulent Atmosphere[J]. ACTA PHOTONICA SINICA, 2013, 42(5): 505.

本文已被 10 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!