半导体光电, 2020, 41 (2): 257, 网络出版: 2020-06-17  

基于GPU的分布式全息孔径数字成像技术研究

Research on Distributed Holographic Aperture Digital Imaging Technology Based on GPU
作者单位
中国科学院光电技术研究所, 成都 610200
摘要
分布式全息孔径数字成像技术是利用数字全息记录各子孔径的复振幅信息, 通过孔径间相位拼接实现综合成像的一种主动成像技术。在远距离成像中, 大气湍流引入的子孔径内高阶相位误差和子孔径间低阶相位误差, 以及孔径间的位置失配误差, 都会影响成像质量。随机并行梯度下降算法(SPGD)是一种无波前探测优化控制算法, 具有可以并行、快速收敛、高效可靠等优点, 可用于校正系统孔径内高阶和孔径间低价相位误差。但是SPGD算法需要多次迭代, 运算量巨大, 难以满足实时性要求。文章基于GPU平台, 对高、低阶相位误差校正进行了并行加速处理, 运算速度较CPU平台分别提升26.42倍和36.47倍。此外, 采用AKZAE算法校正各子孔径间的位置失配误差, 完成了各子孔径复振幅的拼接, 最终实现了分布式四孔径的综合成像。
Abstract
Distributed holographic aperture digital imaging technology is an active imaging technology that uses digital holography to record the complex amplitude information of each sub-aperture, and realizes comprehensive imaging through phase stitching between apertures. In long-distance imaging, the high-order phase error in the subaperture introduced by atmospheric turbulence, the low-order phase error between the subapertures, and the position mismatch error between the apertures will affect the imaging quality. Stochastic parallel gradient descent (SPGD) is an optimal control algorithm without wavefront detection. With the advantages of parallelism, fast convergence, high efficiency and reliability, it can be used to correct high-order and low-cost phase errors within the aperture of the system. However, the SPGD algorithm requires multiple iterations and a huge amount of calculations, which is difficult to meet the real-time requirements. In this paper, parallel acceleration processing was performed based on the GPU platform for both high and low-order phase error correction, and the operation speed is 26.42 and 36.47 times higher than the CPU platform, respectively. In addition, the AKZAE algorithm was used to correct the position mismatch error between the sub-apertures and complete the splicing of the complex amplitudes of the sub-apertures, Finally, distributed four-aperture comprehensive imaging was realized.
参考文献

[1] Born M, Wolf E. Principles of Optics[M]. 7th Edi. Cambridge: Cambridge University Press, 1999: 952.

[2] 彭建涛. 基于计算全息的拼接式大口径光学系统检测与共相技术研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2017.

    Peng Jiantao. Research on detection and common phase technology of spliced large aperture optical system based on computational holography[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics of the Chinese Academy of Sciences, 2017.

[3] 姜文汉, 张雨东, 饶长辉, 等. 中国科学院光电技术研究所的自适应光学研究进展[J]. 光学学报, 2011, 31(9): 64-72.

    Jiang Wenhan, Zhang Yudong, Rao Changhui, et al. Progress in adaptive optics research of institute of optoelectronic technology, Chinese academy of sciences[J]. Acta Optica Sinica, 2011, 31(9): 64-72.

[4] Marron J C, Kendrick R L. Distributed aperture active imaging[J]. Proc SPIE, 2007, 6550: 65500A-65500A-7.

[5] Hoft T, Kendrick R, Marron J, et al. Two-wavelength digital holography[C]// Digital Holography & Three-dimensional Imaging 2007, 2007: DTuD1.

[6] Marron J C, Kendrick R L. Multi-aperture 3D imaging systems[C]// 2008 IEEE Aerospace Conf., 2008: 4526385.

[7] 陈 波, 李新阳, 姜文汉. 大气湍流自适应光学随机并行梯度下降算法的优化[J]. 中国激光, 2010, 37(4): 959-964.

    Chen Bo, Li Xinyang, Jiang Wenhan. Optimization of adaptive optical stochastic parallel gradient descent algorithm for atmospheric turbulence[J]. Chinese J. of Lasers, 2010, 37(4): 959-964.

[8] Pablo Fernandez Alcantarilla. Fast explicit diffusion for accelerated features in nonlinear scale spaces[C]// British Machine Vision Conf. (BMVC), 2013: 10.5244.

[9] Marron J C, Kendrick R L, Seldomridge N, et al. Atmospheric turbulence correction using digital holographic detection: Experimental results[J]. Opt. Express, 2009, 17(14): 11638-11651.

[10] 龙学军. 基于像质评价函数最优化的自适应波前控制技术研究[D]. 长沙: 国防科学技术大学, 2006.

    Long Xuejun. Research on adaptive wavefront control technology based on image quality evaluation function optimization[D]. Changsha: National University of Defense Technology, 2006.

[11] 杜竹君, 高天欣, 唐晓英. 图形处理器在实时光学相干断层成像中的应用[J]. 激光生物学报, 2017, 26(2): 97-103.

    Du Zhujun, Gao Tianxin, Tang Xiaoying. The usage of graphics processing unit in real-time imaging of optical coherence tomography[J]. Acta Laser Biology Sinica, 2017, 26(2): 97-103.

[12] 关宏灿, 李传荣, 周 梅, 等. 基于CUDA的三维成像载荷快速融合处理方法研究[J]. 遥感技术与应用, 2017, 32(3): 443-448.

    Guan Hongcan, Li Chuanrong, Zhou Mei, et al. Research on fast fusion of 3D imaging payload based on CUDA[J]. Remote Sensing Technol. and Application, 2017, 32(3): 443-448.

[13] 全吉成, 王 平, 王宏伟. 计算机图形处理器加速的光学航空影像正射校正[J]. 光学精密工程, 2016, 24(11): 2863-2871.

    Quan Jicheng, Wang Ping, Wang Hongwei. Orthorectification of optical aerial images by GPU acceleration[J]. Guangxue Jingmi Gongcheng/Optics and Precision Engin., 2016, 24(11): 2863-2871.

黄家应, 杨峰, 朱磊, 饶长辉. 基于GPU的分布式全息孔径数字成像技术研究[J]. 半导体光电, 2020, 41(2): 257. HUANG Jiaying, YANG Feng, ZHU Lei, RAO Changhui. Research on Distributed Holographic Aperture Digital Imaging Technology Based on GPU[J]. Semiconductor Optoelectronics, 2020, 41(2): 257.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!