激光与光电子学进展, 2019, 56 (20): 202409, 网络出版: 2019-10-22   

表面等离子激元纳米激光器综述 下载: 2325次

Surface Plasmon Polariton Nanolasers
作者单位
郑州大学物理工程学院, 河南 郑州 450000
引用该论文

杨琳, 段智勇, 马刘红, 李梦珂. 表面等离子激元纳米激光器综述[J]. 激光与光电子学进展, 2019, 56(20): 202409.

Lin Yang, Zhiyong Duan, Liuhong Ma, Mengke Li. Surface Plasmon Polariton Nanolasers[J]. Laser & Optoelectronics Progress, 2019, 56(20): 202409.

参考文献

[1] 宁存政. 半导体纳米激光[J]. 物理学进展, 2011, 31(3): 145-160.

    Ning C Z. Semiconductor nanolasers[J]. Progress in Physics, 2011, 31(3): 145-160.

[2] Wurtz G A, Pollard R, Zayats A V. Optical bistability in nonlinear surface-plasmon polaritonic crystals[J]. Physical Review Letters, 2006, 97(5): 057402.

[3] Pan D, Wei H, Xu H X. Optical interferometric logic gates based on metal slot waveguide network realizing whole fundamental logic operations[J]. Optics Express, 2013, 21(8): 9556-9562.

[4] Shih M H. Small and fast plasmonic modulator[J]. Nature Photonics, 2014, 8(3): 171-172.

[5] Arghir I, Spasic D, Verlinden B E, et al. Improved surface plasmon resonance biosensing using silanized optical fibers[J]. Sensors and Actuators B: Chemical, 2015, 216: 518-526.

[6] Bombarová K, Chlpík J, Cirák J. Surface plasmon resonance ellipsometry based biosensor for the investigation of biomolecular interactions[J]. Materials Today: Proceedings, 2015, 2(1): 70-76.

[7] Atwater H A, Polman A. Plasmonics for improved photovoltaic devices[J]. Nature Materials, 2010, 9(3): 205-213.

[8] 尹娟, 陈跃刚. 表面等离子激元耦合到自由空间中光束的研究[J]. 激光与光电子学进展, 2017, 54(4): 042401.

    Yin J, Chen Y G. Coupling surface plasmon polaritons into beams in free space[J]. Laser & Optoelectronics Progress, 2017, 54(4): 042401.

[9] 冯丹丹, 李志全, 岳中, 等. 三维光场限制的混合表面等离子体纳米激光器[J]. 中国激光, 2017, 44(10): 1001005.

    Feng D D, Li Z Q, Yue Z, et al. Hybrid surface plasmonic nanolaser with three dimensional optical field confinement[J]. Chinese Journal of Lasers, 2017, 44(10): 1001005.

[10] 顾本源. 表面等离子体亚波长光学原理和新颖效应[J]. 物理, 2007, 36(4): 280-287.

    Gu B Y. Surface plasmon subwavelength optics: principles and novel effects[J]. Physics, 2007, 36(4): 280-287.

[11] 王志斌, 董伟. 通信波长下混合表面等离子体纳米激光器的研究[J]. 中国激光, 2018, 45(4): 0401013.

    Wang Z B, Dong W. Hybrid surface plasmonic nano-laser at communication wavelength[J]. Chinese Journal of Lasers, 2018, 45(4): 0401013.

[12] Bergman D J, Stockman M I. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems[J]. Physical Review Letters, 2003, 90(2): 027402.

[13] Noginov M A, Zhu G, Belgrave A M, et al. Demonstration of a spaser-based nanolaser[J]. Nature, 2009, 460(7259): 1110-1112.

[14] Oulton R F, Sorger V J, Genov D A, et al. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation[J]. Nature Photonics, 2008, 2(8): 496-500.

[15] Oulton R F, Sorger V J, Zentgraf T, et al. Plasmon lasers at deep subwavelength scale[J]. Nature, 2009, 461(7264): 629-632.

[16] 雷建国, 刘天航, 林景全, 等. 表面等离子激元的若干新应用[J]. 中国光学与应用光学, 2010, 3(5): 432-439.

    Lei J G, Liu T H, Lin J Q, et al. New applications of surface plasmon polaritons[J]. Chinese Journal of Optics and Applied Optics, 2010, 3(5): 432-439.

[17] Lu Y J, Kim J, Chen H Y, et al. Plasmonic nanolaser using epitaxially grown silver film[J]. Science, 2012, 337(6093): 450-453.

[18] Chou Y H, Hong K B, Chung Y C, et al. Metal for plasmonic ultraviolet laser: Al or Ag?[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(6): 4601907.

[19] Tao T, Zhi T, Liu B, et al. Manipulable and hybridized, ultralow-threshold lasing in a plasmonic laser using elliptical InGaN/GaN nanorods[J]. Advanced Functional Materials, 2017, 27(37): 1703198.

[20] Hill M T, Oei Y S, Smalbrugge B, et al. Lasing in metallic-coated nanocavities[J]. Nature Photonics, 2007, 1(10): 589-594.

[21] Nezhad M P, Simic A, Bondarenko O, et al. Room-temperature subwavelength metallo-dielectric lasers[J]. Nature Photonics, 2010, 4(6): 395-399.

[22] Kwon S H, Kang J H, Seassal C, et al. Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity[J]. Nano Letters, 2010, 10(9): 3679-3683.

[23] Yu K, Lakhani A, Wu M C. Subwavelength metal-optic semiconductor nanopatch lasers[J]. Optics Express, 2010, 18(9): 8790-8799.

[24] Hill M T, Marell M. Leong E S P, et al. Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides[J]. Optics Express, 2009, 17(13): 11107-11112.

[25] Kim M K, Lakhani A M, Wu M C. Efficient waveguide-coupling of metal-clad nanolaser cavities[J]. Optics Express, 2011, 19(23): 23504-23512.

[26] Matsudaira A, Lu C Y. O’Brien T, et al. Metal-cavity quantum-dot lasers with enhanced thermal performance[J]. Optics Letters, 2012, 37(16): 3297-3299.

[27] Tan Y, Zhang H, Zhao C J, et al. Bi2Se3Q-switched Nd∶YAG ceramic waveguide laser[J]. Optics Letters, 2015, 40(4): 637-640.

[28] Tan Y, Guo Z N, Ma L N, et al. Q-switched waveguide laser based on two-dimensional semiconducting materials: tungsten disulfide and black phosphorous[J]. Optics Express, 2016, 24(3): 2858-2866.

[29] Chen X, Wang Y, Xiang Y J, et al. A broadband optical modulator based on a graphene hybrid plasmonic waveguide[J]. Journal of Lightwave Technology, 2016, 34(21): 4948-4953.

[30] Xu Z J, Zhu J, Xu W J, et al. Novel graphene enhancement nanolaser based on hybrid plasmonic waveguides at optical communication wavelength[J]. Chinese Physics B, 2018, 27(8): 088104.

[31] Bian Y S, Zheng Z, Zhao X, et al. Nanowire based hybrid plasmonic structures for low-threshold lasing at the subwavelength scale[J]. Optics Communications, 2013, 287: 245-249.

[32] Bian Y S, Zheng Z, Liu Y, et al. Coplanar plasmonic nanolasers based on edge-coupled hybrid plasmonic waveguides[J]. IEEE Photonics Technology Letters, 2011, 23(13): 884-886.

[33] Akahane Y, Asano T, Song B S, et al. High-Q photonic nanocavity in a two-dimensional photonic crystal[J]. Nature, 2003, 425(6961): 944-947.

[34] Sanvitto D, Daraei A, Tahraoui A, et al. Observation of ultrahigh quality factor in a semiconductor microcavity[J]. Applied Physics Letters, 2005, 86(19): 191109.

[35] Ma R M, Oulton R F, Sorger V J, et al. Room-temperature sub-diffraction-limited plasmon laser by total internal reflection[J]. Nature Materials, 2011, 10(2): 110-113.

[36] Bo F, Wang X O, Li Y, et al. Mode characteristics of silver-coated inverted-wedge silica microdisks[J]. Science China Physics, Mechanics & Astronomy, 2015, 58(11): 114207.

[37] Xiang Y, Song Y J. Double anticrossing coupling in a single metal-clad microcapillary[J]. IEEE Photonics Journal, 2018, 10(3): 5700409.

杨琳, 段智勇, 马刘红, 李梦珂. 表面等离子激元纳米激光器综述[J]. 激光与光电子学进展, 2019, 56(20): 202409. Lin Yang, Zhiyong Duan, Liuhong Ma, Mengke Li. Surface Plasmon Polariton Nanolasers[J]. Laser & Optoelectronics Progress, 2019, 56(20): 202409.

本文已被 8 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!