光学与光电技术, 2017, 15 (3): 79, 网络出版: 2017-07-10   

基于混沌激光熵源产生实时高速随机码

Generating High-Speed Random Bits in Real Time Based on Chaotic Laser Sources
桑鲁骁 1,2,*李璞 1,2王安帮 1,2郭园园 1,2王云才 1,2
作者单位
1 太原理工大学新型传感器与智能控制教育部重点实验室, 山西 太原 030024
2 太原理工大学物理与光电工程学院光电工程研究所, 山西 太原 030024
摘要
论证了基于单个激光混沌信号作为物理熵源产生高速实时物理随机码的发生装置。搭建了全光纤结构的激光混沌源,输出强度随机起伏的光信号,经T型连接器分为两路,被差分ADC作用后,输出二进制比特流;利用延迟异或技术消除弱周期性后,可实时产生高质物理随机码序列,该序列码率达4.5 Gbit/s。后续分析表明,所获得的随机码是统计无偏且不相关的,并可成功通过随机数行业测试标准。
Abstract
A method of high-speed real-time physical random bit generation is demonstrated based on a chaotic laser. The chaotic laser is constructed of all-fiber structure, and the output signal is quantized into binary stream by a difference ADC. The delay exclusive-OR technique is used to overcome the weak periodicity induced by the external cavity of the chaotic laser. After exclusive-OR operation, the device can generate a fast random bit stream in real time without any off-line processing procedures. The bit rate can reach to 4.5 Gbps, which is determined by a trigger clock. Experiment results prove that the generator possesses high-quality randomness and the random bits can successfully pass the test standard of random number industry.
参考文献

[1] Shannon C E. Communication theory of secrecy systems[J]. Bell System Technical Journal, 1949, 28(4): 656-715.

[2] Petrie C S, Connelly J A. A noise-based IC random number generator for applications in cryptography[J]. Circuits and Systems Ⅰ: Fundamental Theory and Applications, IEEE Transactions on, 2000, 47(5): 615-621.

[3] Bucci M, Germani L, Luzzi R, et al. A high-speed oscillator-based truly random number source for cryptographic applications on a smart card IC[J]. IEEE Transactions on Computers, 2003, 52(4): 403-409.

[4] Uchida A, Amano K, Inoue M, et al. Fast physical random bit generation with chaotic semiconductor lasers[J]. Nature Photonics, 2008, 2(12): 728-732.

[5] Kanter I, Aviad Y, Reidler I, et al. An optical ultrafast random bit generator[J]. Nature Photonics, 2010, 4(1): 58-61.

[6] Argyris A, Deligiannidis S, Pikasis E, et al. Implementation of 140 Gb/s true random bit generator based on a chaotic photonic integrated circuit[J]. Optics Express, 2010, 18(18): 18763-18768.

[7] Li N, Kim B, Chizhevsky V N, et al. Two approaches for ultrafast random bit generation based on the chaotic dynamics of a semiconductor laser[J]. Optics express, 2014, 22(6): 6634-6646.

[8] Li P, Wang Y C, Zhang J Z. All-optical fast random number generator[J]. Optics Express, 2010, 18(19): 20360-20369.

[9] Oliver N, Soriano M C, Sukow D W, et al. Dynamics of a semiconductor laser with polarization-rotated feedback and its utilization for random bit generation[J]. Optics Letters, 2011, 36(23): 4632-4634.

[10] 杨海波, 吴正茂, 唐曦, 等. 反馈强度对外腔反馈半导体激光器混沌熵源生成的随机数序列性能的影响[J]. 物理学报, 2015, 64(8): 84204-084204.

    YANG Hai-bo, WU Zheng-mao, TANG Xi, et al. Influence of feedback strengthon the characteristics of the random number sequence extracted froman external-cavity feedback semiconductor laser[J]. Acta Physica Sinica, 2015, 64(8): 84204-084204.

[11] Zhang Y, Zhang J, Zhang M, et al. 2.87-Gb/s random bit generation based on bandwidth-enhanced chaotic laser[J]. Chinese Optics Letters, 2011, 9(3): 031404.

[12] Li P, Wang Y C, Wang A B, et al. Direct generation of all-optical random numbers from optical pulse amplitude chaos[J]. Optics Express, 2012, 20(4): 4297-4308.

[13] Li P, Sun Y, Liu X, et al. Fully photonics-based physical random bit generator[J]. Optics Letters, 2016, 41(14): 3347-3350.

[14] Qi B, Chi Y M, Lo H K, et al. High-speed quantum random number generation by measuring phase noise of a single-mode laser[J]. Optics Letters, 2010, 35(3): 312-314.

[15] Guo H, Tang W, Liu Y, et al. Truly random number generation based on measurement of phase noise of a laser[J]. Physical Review E, 2010, 81(5): 051137.

[16] Li X, Cohen A B, Murphy T E, et al. Scalable parallel physical random number generator based on a superluminescent LED[J]. Optics Letters, 2011, 36(6): 1020-1022.

[17] Williams C R S, Salevan J C, Li X, et al. Fast physical random number generator using amplified spontaneous emission[J]. Optics Express, 2010, 18(23): 23584-23597.

[18] Argyris A, Pikasis E, Deligiannidis S, et al. Sub-Tb/s physical random bit generators based on direct detection of amplified spontaneous emission signals[J]. Journal of Lightwave Technology, 2012, 30(9): 1329-1334.

[19] Wei W, Xie G, Dang A, et al. High-speed and bias-free optical random number generator[J]. IEEEPhotonics Technology Letters, 2012, 24(6): 437-439.

[20] Liu Y, Zhu M Y, Luo B, et al. Implementation of 1.6 Tbs-1 truly random number generation based on a super-luminescent emitting diode[J]. Laser Physics Letters, 2013, 10(4): 045001.

[21] Gabriel C, Wittmann C, Sych D, et al. A generator for unique quantum random numbers based on vacuum states[J]. Nature Photonics, 2010, 4(10): 711-715.

[22] Symul T, Assad S M, Lam P K. Real time demonstration of high bitrate quantum random number generation with coherent laser light[J]. Applied Physics Letters, 2011, 98(23): 231103.

[23] Jofre M, Curty M, Steinlechner F, et al. True random numbers from amplified quantum vacuum[J]. Optics Express, 2011, 19(21): 20665-20672.

[24] Shen Y, Tian L, Zou H. Practical quantum random number generator based on measuring the shot noise of vacuum states[J]. Physical Review A, 2010, 81(6): 063814.

[25] Rukhin A, Soto J, Nechvatal J, et al. A statistical test suite for random and pseudorandom number generators for cryptographic applications[R]. BOOZ-ALLEN AND HAMILTON INC MCLEAN VA, 2001.

[26] Wu Y, Wang Y C, Li P, et al. Can fixed time delay signature be concealed in chaotic semiconductor laser with optical feedback[J]. IEEE Journal of Quantum Electronics, 2012, 48(11): 1371-1379.

[27] Zhang J, Wang Y, Xue L, et al. Delay line length selection in generating fast random numbers with a chaotic laser[J]. Applied Optics, 2012, 51(11): 1709-1714.

桑鲁骁, 李璞, 王安帮, 郭园园, 王云才. 基于混沌激光熵源产生实时高速随机码[J]. 光学与光电技术, 2017, 15(3): 79. SANG Lu-xiao, LI Pu, WANG An-bang, GUO Yuan-yuan, WANG Yun-cai. Generating High-Speed Random Bits in Real Time Based on Chaotic Laser Sources[J]. OPTICS & OPTOELECTRONIC TECHNOLOGY, 2017, 15(3): 79.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!