Photonics Research, 2020, 8 (8): 08001388, Published Online: Jul. 31, 2020   

Impact of carrier transport on the performance of QD lasers on silicon: a drift-diffusion approach Download: 626次

Author Affiliations
Department of Electronics and Telecommunications, Politecnico di Torino, Turin 10129, Italy
Copy Citation Text

Marco Saldutti, Alberto Tibaldi, Federica Cappelluti, Mariangela Gioannini. Impact of carrier transport on the performance of QD lasers on silicon: a drift-diffusion approach[J]. Photonics Research, 2020, 8(8): 08001388.

References

[1] K. Nishi, K. Takemasa, M. Sugawara, Y. Arakawa. Development of quantum dot lasers for data-com and silicon photonics applications. IEEE J. Sel. Top. Quantum Electron., 2017, 23: 1901007.

[2] S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, H. Liu. Electrically pumped continuous-wave III-V quantum dot lasers on silicon. Nat. Photonics, 2016, 10: 307-311.

[3] Y. Shi, Z. Wang, J. V. Campenhout, M. Pantouvaki, W. Guo, B. Kunert, D. V. Thourhout. Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer. Optica, 2017, 4: 1468-1473.

[4] A. Y. Liu, J. Bowers. Photonic integration with epitaxial III-V on silicon. IEEE J. Sel. Top. Quantum Electron., 2018, 24: 6000412.

[5] J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, J. E. Bowers. Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si. Opt. Express, 2017, 25: 3927-3934.

[6] Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, J. E. Bowers. 1.3 μm submilliamp threshold quantum dot micro-lasers on Si. Optica, 2017, 4: 940-944.

[7] A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, J. E. Bowers. Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si. Opt. Lett., 2017, 42: 338-341.

[8] D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, J. E. Bowers. High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si. Appl. Phys. Lett., 2017, 111: 122107.

[9] A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, J. E. Bowers. Quantum dot lasers for silicon photonics. Photon. Res., 2015, 3: B1-B9.

[10] J. M. Gérard, O. Cabrol, B. Sermage. InAs quantum boxes: highly efficient radiative traps for light emitting devices on Si. Appl. Phys. Lett., 1996, 68: 3123-3125.

[11] Z. Liu, C. Hantschmann, M. Tang, Y. Lu, J. Park, M. Liao, S. Pan, A. M. Sanchez, R. Beanland, M. Martin, T. Baron, S. Chen, A. J. Seeds, I. White, R. Penty, H. Liu. Origin of defect tolerance in InAs/GaAs quantum dot lasers grown on silicon. J. Lightwave Technol., 2019, 38: 240-248.

[12] A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, O. Gauthier-Lafaye. Simultaneous two-state lasing in quantum-dot lasers. Appl. Phys. Lett., 2003, 82: 1818-1820.

[13] W. W. Chow, F. Jahnke. On the physics of semiconductor quantum dots for applications in lasers and quantum optics. Prog. Quantum Electron., 2013, 37: 109-184.

[14] M. Gioannini. Ground-state power quenching in two-state lasing quantum dot lasers. J. Appl. Phys., 2012, 111: 043108.

[15] V. V. Korenev, A. V. Savelyev, A. E. Zhukov, A. V. Omelchenko, M. V. Maximov. Analytical approach to the multi-state lasing phenomenon in quantum dot lasers. Appl. Phys. Lett., 2013, 102: 112101.

[16] H. Huang, J. Duan, D. Jung, A. Y. Liu, Z. Zhang, J. Norman, J. E. Bowers, F. Grillot. Analysis of the optical feedback dynamics in InAS/GaAs quantum dot lasers directly grown on silicon. J. Opt. Soc. Am. B, 2018, 35: 2780-2787.

[17] P. M. Smowton, I. C. Sandall. Gain in p-doped quantum dot lasers. J. Appl. Phys., 2007, 101: 013107.

[18] V. V. Korenev, A. V. Savelyev, M. V. Maximov, F. I. Zubov, Y. M. Shernyakov, M. M. Kulagina, A. E. Zhukov. Effect of modulation p-doping level on multi-state lasing in InAs/InGaAs quantum dot lasers having different external loss. Appl. Phys. Lett., 2017, 111: 132103.

[19] Q. Li, X. Wang, Z. Zhang, H. Chen, Y. Huang, C. Hou, J. Wang, R. Zhang, J. Ning, J. Min, C. Zheng. Development of modulation p-doped 1310 nm InAs/GaAs quantum dot laser materials and ultrashort cavity Fabry-Perot and distributed-feedback laser diodes. ACS Photonics, 2018, 5: 1084-1093.

[20] Z. Z. Zhang, D. Jung, J. C. Norman, P. Patel, W. W. Chow, J. E. Bowers. Effects of modulation p doping in InAs quantum dot lasers on silicon. Appl. Phys. Lett., 2018, 113: 061105.

[21] M. Gioannini, A. P. Cédola, N. D. Santo, F. Bertazzi, F. Cappelluti. Simulation of quantum dot solar cells including carrier intersubband dynamics and transport. IEEE J. Photovoltaics, 2013, 3: 1271-1278.

[22] A. P. Cédola, D. Kim, A. Tibaldi, M. Tang, A. Khalili, J. Wu, H. Liu, F. Cappelluti. Physics-based modeling and experimental study of Si-doped InAs/GaAs quantum dot solar cells. Int. J. Photoenergy, 2018, 2018: 7215843.

[23] D. Gready, G. Eisenstein. Carrier dynamics and modulation capabilities of 1.55-μm quantum-dot lasers. IEEE J. Sel. Top. Quantum Electron., 2013, 19: 1900307.

[24] D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, J. E. Bowers. Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency. ACS Photonics, 2018, 5: 1094-1100.

[25] D. Inoue, D. Jung, J. Norman, Y. Wan, N. Nishiyama, S. Arai, A. C. Gossard, J. E. Bowers. Directly modulated 1.3 μm quantum dot lasers epitaxially grown on silicon. Opt. Express, 2018, 26: 7022-7033.

[26] I. O’Driscoll, T. Piwonski, C.-F. Schleussner, J. Houlihan, G. Huyet, R. Manning. Electron and hole dynamics of InAs/GaAs quantum dot semiconductor optical amplifiers. Appl. Phys. Lett., 2007, 91: 071111.

[27] A. Tibaldi, F. Bertazzi, M. Goano, R. Michalzik, P. Debernardi. Venus: a vertical-cavity surface-emitting laser electro-opto-thermal numerical simulator. IEEE J. Sel. Top. Quantum Electron., 2019, 25.

[28] M. Yamaguchi, A. Yamamoto, Y. Itoh. Effect of dislocations on the efficiency of thin-film GaAs solar cells on Si substrates. J. Appl. Phys., 1986, 59: 1751-1753.

[29] C. Andre, J. Boeckl, D. Wilt, A. Pitera, M. L. Lee, E. Fitzgerald, B. Keyes, S. Ringel. Impact of dislocations on minority carrier electron and hole lifetimes in GaAs grown on metamorphic SiGe substrates. Appl. Phys. Lett., 2004, 84: 3447-3449.

[30] M. P. Lumb, M. A. Steiner, J. F. Geisz, R. J. Walters. Incorporating photon recycling into the analytical drift-diffusion model of high efficiency solar cells. J. Appl. Phys., 2014, 116: 194504.

[31] ColdrenL. A.CorzineS. W.MasanovicM. L., A Phenomenological Approach to Diode Lasers (Wiley, 2012), Chap. 2, pp. 4590.

[32] D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, J. E. Bowers. Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si. Appl. Phys. Lett., 2018, 112: 153507.

[33] M. Buffolo, F. Samparisi, L. Rovere, C. De Santi, D. Jung, J. Norman, J. E. Bowers, R. W. Herrick, G. Meneghesso, E. Zanoni, M. Meneghini. Investigation of current-driven degradation of 1.3 μm quantum-dot lasers epitaxially grown on silicon. IEEE J. Sel. Top. Quantum Electron., 2020, 26.

[34] A. Markus, J. X. Chen, O. Gauthier-Lafaye, J. Provost, C. Paranthoen, A. Fiore. Impact of intraband relaxation on the performance of a quantum-dot laser. IEEE J. Sel. Top. Quantum Electron., 2003, 9: 1308-1314.

[35] J. Duan, H. Huang, B. Dong, J. C. Norman, Z. Zhang, J. E. Bowers, F. Grillot. Dynamic and nonlinear properties of epitaxial quantum dot lasers on silicon for isolator-free integration. Photon. Res., 2019, 7: 1222-1228.

[36] J. C. Norman, Z. Zhang, D. Jung, C. Shang, M. Kennedy, M. Dumont, R. W. Herrick, A. C. Gossard, J. E. Bowers. The importance of p-doping for quantum dot laser on silicon performance. IEEE J. Quantum Electron., 2019, 55: 2001111.

Marco Saldutti, Alberto Tibaldi, Federica Cappelluti, Mariangela Gioannini. Impact of carrier transport on the performance of QD lasers on silicon: a drift-diffusion approach[J]. Photonics Research, 2020, 8(8): 08001388.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!