Photonics Research, 2020, 8 (8): 08001388, Published Online: Jul. 31, 2020   

Impact of carrier transport on the performance of QD lasers on silicon: a drift-diffusion approach Download: 626次

Author Affiliations
Department of Electronics and Telecommunications, Politecnico di Torino, Turin 10129, Italy
Figures & Tables

Fig. 1. Schematic representation of the epitaxial structure of the studied QD lasers, similar to those in Refs. [24,25]. The growth direction is from the bottom to the top.

下载图片 查看原文

Fig. 2. Band diagram at thermodynamic equilibrium, with the conduction band (blue), the valence band (red), and the Fermi level (dashed, black). The dotted, vertical lines delimit the SCH region.

下载图片 查看原文

Fig. 3. Schematic representation of the QD energy states and intersubband transitions.

下载图片 查看原文

Fig. 4. Calculated GS modal gain versus current density for different levels of TDD and experimental gain (circles) from Ref. [24].

下载图片 查看原文

Fig. 5. (a) GS threshold current density and (c) optical power as a function of TDDbulk, for fixed DWELL SRH lifetime corresponding to TDDWL=105  cm2. The solid lines are almost overlapped. (b) GS threshold current density and slope efficiency and (d) optical power as a function of TDD in the barrier and DWELL layers (TDDWL=TDDbulk).

下载图片 查看原文

Fig. 6. GS (solid) and ES (dotted) optical power with (a) μn=8500  cm2/(V·s) and μp=350  cm2/(V·s) and (b) μn=μp=8500  cm2/(V·s) in the SCH region.

下载图片 查看原文

Fig. 7. Net capture rate from the bulk states to the WL with (a) μn=8500  cm2/(V·s) and μp=350  cm2/(V·s) and (b) μn=μp=8500  cm2/(V·s) in the SCH region. Layer 1 (5) is the closest to the p-contact (n-contact).

下载图片 查看原文

Fig. 8. Contribution of (a) electrons and (b) holes to the GS modal gain: solid line is the overall contribution, whereas colored dashed lines are the contribution of the different layers (color legend is the same as in Fig. 6). Vertical lines indicate GS and ES threshold currents. (c) GS electrons and (d) holes occupation probability. The mobility of electrons and holes in the SCH region is μn=8500  cm2/(V·s) and μp=350  cm2/(V·s). Layer 1 (5) is the closest to the p-contact (n-contact).

下载图片 查看原文

Fig. 9. GS (solid) and ES (dotted) optical power with (a) no p-type modulation doping and a p-type modulation doping of (b) 5×1017  cm3 and (c) 30×1017  cm3.

下载图片 查看原文

Fig. 10. (a) GS (blue) and ES (red) threshold current density as functions of the p-type modulation doping density. (b) Total radiative and SRH recombination rates as functions of p-type modulation doping density calculated at the JthGS values in (a).

下载图片 查看原文

Fig. 11. (a) GS modal gain versus current density and (b) holes (GGSmod,p, dashed) and electrons (GGSmod,n, solid) contributions to the modal gain.

下载图片 查看原文

Fig. 12. (a) Contribution of electrons (blue) and holes (red) to the GS modal gain at J=580  A/cm2 versus p-doping density and (b) corresponding GS modal gain.

下载图片 查看原文

Fig. 13. (a) Conduction band (solid) and electron quasi-Fermi level (dashed) for the bulk states of the SCH region at J=580  A/cm2. (b) Valence band (solid) and hole quasi-Fermi level (dashed) for the bulk states of the SCH region at J=580  A/cm2.

下载图片 查看原文

Fig. 14. Net capture rate from the bulk states to the WL at J=580  A/cm2 for each layer of QDs.

下载图片 查看原文

Fig. 15. Total SRH recombination rate versus voltage at three different doping levels. The vertical dashed lines indicate the voltage value corresponding to the lasing threshold.

下载图片 查看原文

Table1. Simulation Parameters

ParametersValues
ΔEnk, k=WL,ES,GS [meV]177.7, 30, 41.1 [14]
ΔEpk, k=WL,ES,GS [meV]166.3, 25, 25 [14]
τn,CAPBWL, τn,CAPWLES, τn,CAPESGS [ps]0.1, 1, 1 [26]
τp,CAPBWL, τp,CAPWLES, τp,CAPESGS [ps]0.1, 0.1, 0.1 [26]
τradk, k=WL,ES,GS [ns]1, 1, 1 [11,22]
τn,SRHk, k=ES,GS [ns]1, 1 [11,22]
τp,SRHk, k=ES,GS [ns]1, 1 [11,22]
QD sheet density NQD,i [cm2]4.9×1010
GS (ES) degeneracy μGS (μES)2 (4)
Gain coefficient G0GS (G0ES) [cm1]433 (779.4)
Electron (hole) effective mass mn* (mp*) [m0]0.054 (0.49)
Optical confinement factor Γi2%
Intrinsic loss αi [cm1]5
Waveguide width [μm]3.5
Facet reflection coefficient0.32
Spontaneous emission factor βsp104
Group index3.56
GaAs Dn, Dp [cm2·s1]221, 10
In0.15Ga0.85AsDn, Dp [cm2·s1]181, 10
Temperature [K]300

查看原文

Marco Saldutti, Alberto Tibaldi, Federica Cappelluti, Mariangela Gioannini. Impact of carrier transport on the performance of QD lasers on silicon: a drift-diffusion approach[J]. Photonics Research, 2020, 8(8): 08001388.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!