激光生物学报, 2019, 28 (1): 13, 网络出版: 2019-03-23  

基于光谱技术的产前检测方法研究进展

Prenatal Detection Research Based on Spectroscopic Technology
作者单位
1 福建师范大学光电与信息工程学院,医学光电科学与技术教育部重点实验室,福建省光子技术重点实验室, 福建 福州 350007
2 福建省妇幼保健院, 福建 福州 350001
摘要
优生优育是我们重要的国策。自二胎政策颁布以来,高龄产妇数量呈现明显上升的趋势,先天性畸形儿的发生几率变大。传统的产前检测方法存在较高流产风险、灵敏度低、耗时等问题,探寻一种无损快捷、经济灵敏的产前检测方法至关重要。本文首先介绍了常见的胎儿出生缺陷及当前临床常见的产前检测方法的优缺点,重点综述了光谱技术的特点及其在产前检测中的应用。其中包括光谱核型、实时荧光定量PCR、SNP等位基因位点分析等利用荧光光谱分析方法和拉曼光谱在产前检测中的应用情况。特别阐述了表面增强拉曼光谱SERS在生物检测中的优势,最后总结并展望了SERS光谱在产前检测的应用。
Abstract
Eugenics is our important national policy.Since the promulgation of the second-child policy, the number of elderly mothers has increased significantly, and the incidence of congenital malformations has increased.Traditional prenatal detection methods have some problems, such as high risk of abortion, low sensitivity, time-consuming etc. It is very important to explore a non-destructive, fast, economical and sensitive prenatal detection method. The common birth defects were introduced and the merits and drawbacks among current most-used prenatal detection methods were compared in this review. The characteristics of spectroscopic technologies, as well as their applications in prenatal testing were summarized.Spectral karyotyping, real-time fluorescence quantitative PCR, SNP allele site analysis, etc. by using fluorescence spectrum analysis method and Raman spectroscopy have been reported in the application of prenatal testing. Surface enhanced Raman scattering (SERS), an ultra-sensitive biochemical analytical technology, has been widely used for the detection of biomolecules. The application of SERS spectroscopy in prenatal detection is introduced and prospected.
参考文献

[1] http://www.moh.gov.cn/wsb/pxwfb/201209/55840.shtml

[2] YUSUFRZ, NAEEM R. Cytogenetic abnormalities in products of conception:a relationship revisited[J]. American Journal of Reproductive Immunology, 2015, 52(1): 88-96.

[3] MOTAH M, MOUMI M, NDOUMBE A, et al. Pattern and management of meural tube defect in cameroon[J]. Open Journal of Modern Neurosurgery, 2017, 07(3): 87-102.

[4] CZEIZEL A E,DUD, VERECZKEY A, et al. Folate deficiency and folic acidsupplementation:the prevention of neural-tube defects and congenital heart defects[J]. Nutrients, 2013, 5(11): 4760-4775.

[5] IOLASCON A, ANDOLFO I, BARCELLINI W, et al. Recommendations for splenectomy in hereditary hemolytic anemias[J]. Haematologica, 2017, 102(8): 1304.

[6] LOTHRIDGE K, FOX J, FYNAN E. Blended learning: efficient, timely and cost effective[J]. Australian Journal of Forensic Sciences, 2013, 45(4): 407-416.

[7] 吴春燕. B超产前检查诊断胎儿异常的临床意义[J].中国医学装备, 2015, 12(2): 79-82.

    WU Chunyan. Diagnostic value of prenatal B ultrasound scan for fetal abnormalities[J]. China Medical Equipment, 2015, 12(2): 79-82.

[8] BUCKLEY F, BUCKLEY S. Wrongful deaths and rightful lives - screening for Down Syndrome[J]. Downs Syndrome Research & Practice the Journal of the Sarah Duffen Centre, 2008, 12(2): 79-86.

[9] SILVERMAN N S, WAPNER R J. Chorionic villus sampling and amniocentesis[J]. Current Opinion in Obstetrics & Gynecology, 1990, 2(2): 258-264.

[10] LO Y M, CORBETTA N, CHAMBERLAIN P F, et al.Presence of fetal DNA in maternal plasma and serum[J]. Lancet, 1997, 350(9076): 485-487.

[11] CHIU R W, AKOLEKAR R, ZHENG Y W L, et al. Non-invasive prenatal assessment of trisomy 21 by multiplexed maternal plasma DNA sequencing: large scale validity study[J].Bmj, 2011, 342: c7401.

[12] SCHRCK E, DU M S, VELDMAN T, et al. Multicolor spectral karyotyping of human chromosomes[J]. Science, 1996, 103(1-2): 163-168.

[13] 廖灿, 潘敏, 李东至, 等. 光谱核型分析技术在标记染色体诊断中的应用[J]. 中华妇产科杂志, 2008, 43(5): 321-324.

    LIAO Can, PAN Min, LI Dongzhi, et al.Application of spectral karyotyping in diagnosis and prenatal diagnosis of the marker chromosome[J]. Chinese Journal of Obstetrics and Gynecology, 2008, 43(5): 321-324.

[14] NORDGREN A, HEYMAN M S, SCHOUMANS J, et al.Spectral karyotyping and interphase FISH reveal abnormalities not detected by conventional G-banding. Implications for treatment stratification of childhood acute lymphoblastic leukaemia: detailed analysis of 70 cases[J]. European Journal of Haematology, 2015, 68(1): 31-41.

[15] SANDALINAS M, MRQUEZC, MUNNS. Spectral karyotyping of fresh, non-inseminated oocytes[J]. Molecular Human Reproduction, 2002, 8(6): 580-585.

[16] YARON Y, CARMON E, GOLDSTEIN M, et al. The clinical application of spectral karyotyping (SKY)in the analysis of prenatally diagnosed extra structurally abnormal chromosomes (ESACs)[J]. Prenatal Diagnosis, 2003, 23(1): 74-79.

[17] GUANCIALFRANCHI P,CALABRESE G,MORIZIO E, et al. Identification of 14 rare marker chromosomes and derivatives by spectral karyotyping in prenatal and postnatal diagnosis.[J]. American Journal of Medical Genetics Part A, 2010, 127A(2): 144-148.

[18] 廖灿, 潘敏, 李东至, 等.光谱核型分析技术在标记染色体诊断和产前诊断中的应用[C]. 全国胎儿医学与产前诊断学术研讨会, 2007: 134-136.

    LIAO Can, PAN Min, LI Dongzhi, et al. Application of spectral karyotype analysis in marker chromosome diagnosis and prenatal diagnosis[C]. National Symposium on Fetal Medicine and Prenatal Diagnosis, 2007: 134-136.

[19] BELAUD-ROTUREAU M A, ELGHEZAL H, BERNARDIN C, et al. Spectral karyotyping (SKY)principle, avantages and limitations[J]. Annales De Biologie Clinique, 2003, 61(2): 139.

[20] IMATAKA G, ARISAKA O. Chromosome analysis using spectral karyotyping (SKY)[J]. Cell Biochemistry & Biophysics, 2012, 62(1): 13-17.

[21] 赵焕英, 包金风. 实时荧光定量PCR 技术的原理及其应用研究进展, 中国组织化学与细胞化学杂志, 2007, 16(4): 492-497.

    ZHAO Huanying, BAO Jinfeng. The principle and application of quantitative real-time PCR technology[J]. Chinese Journal of Histochemistry and Cytochemistry, 2007, 16(4): 492-497.

[22] MOUSSA H, TSOCHANDARIDIS M, JEMNI-YACOUB S, et al. Fetal RhD genotyping by real time quantitative PCR in maternal plasma of RhD-negative pregnant women from the Sahel of Tunisia[J]. Annales De Biologie Clinique, 2012, 70(6): 683-688.

[23] SAMURA O, SEKIZAWA A, ZHEN D K, et al.Comparison of fetal cell recovery from maternal blood using a high density gradient for the initial separation step: 1.090 versus 1.119 g/ml[J]. Prenatal Diagnosis, 2015, 20(4): 281-286.

[24] MANN K, PETEK E, PERTL B. Prenatal detection of chromosome aneuploidy by quantitative fluorescence PCR[J]. Humana Press, 2008, 444(92): 141-56.

[25] ZHANG X, WEI S S. Down syndrome screening using real-time fluorescent quantity PCR method[J]. Chinese Journal of Birth Health & Heredity, 2010, 18(5): 31-32.

[26] EMAD A, LAMOUREUX J, OUELLET A, et al. Rapid aneuploidy detection of chromosomes 13, 18, 21, X and Y using quantitative fluorescent polymerase chain reaction with few microdissected fetal cells[J]. Fetal Diagnosis & Therapy, 2015, 38(1): 65-76.

[27] 黄仲军, 朱健生, 尹耕心, 等.利用实时荧光定量PCR技术快速诊断唐氏综合征的研究[J]. 中国计划生育学杂志, 2012, 20(5): 346-348.

    HUANG Zhongjun, ZHU Jiangsheng, YIN Gengxin, et al. Rapid diagnosis of Down’s syndrome by real-time quantitative PCR[J]. Chinese Journal of Family Planning, 2012, 20(5): 346-348.

[28] XIANGDONG K, LIN L, LEI S, et al. Rapid diagnosis of aneuploidy using segmental duplication quantitative fluorescent PCR[J]. Plos One, 2014, 9(3): e88932.

[29] SUN L, FAN Z, LONG J, et al.Rapid prenatal diagnosis of aneuploidy for chromosomes 21, 18, 13, X, and Y using segmental duplication quantitative fluorescent PCR (SD-QF-PCR)[J]. Gene, 2017, 627: 72-78.

[30] 张旋, 韦升市, 谢世营, 等. 实时荧光定量PCR法筛查唐氏综合征的实验研究[J].中国优生与遗传杂志, 2010, (5): 31-32.

    ZHANG Xuan, WEI Shengshi, XIE Shiying, et al. Down syndrome screening using real-time fluorescent quantity PCR method[J].Chinese Journal of Birth Health & Heredity, 2010, (5): 31-32.

[31] LO Y M, TSUI N B, CHIU R W, et al. Plasma placental RNA allelic ratio permits noninvasive prenatal chromosomal aneuploidy detection[J].Nature Medicine, 2007, 13(2): 218-223.

[32] YANG G, YI G C, GAO J S, et al. Prenatal detection of Down’s syndrome by SNP allelic ratio analysis[J].Chinese Journal of Birth Health & Heredity, 2010, 18(3): 30-32.

[33] RAMAN C V, KRISHNAN K S. A new type of secondary radiation (Reprinted from Nature, vol 121, pg 501-502, 1928)[J].Current Science, 1998, 74(4): 381-381.

[34] VARGIS E, WEBB C N, PARIA B C, et al. Detecting changes during pregnancy with Raman spectroscopy[C]. Biomedical Sciences and Engineering Conference, 2011, IEEE

[35] O′BRIEN C M, VARGIS E, RUDIN A, et al. In vivo Raman spectroscopy for biochemical monitoring of the cervix throughout pregnancy[J].American Journal of Obstetrics & Gynecology, 2018, 218(5): 528.e1-528.e18.

[36] 吴智辉, 崔向荣, 黄代政, 等. 脐带血与先天性心脏病患儿红细胞的光谱分析[J]. 激光技术, 2012, 36(2): 233-237.

    WU Zhihui, CUI Xiangrong, HUANG Daizheng, et al. Spectral analysis of red blood cells in umbilical cord blood and children with congenital heart disease[J]. Laser Technology, 2012, 36(2): 238-242.

[37] SUN Y, XU F, ZHANG Y, et al.Metallic nanostructures assembled by DNA and related applications in surface-enhancement Raman scattering (SERS)detection[J].Journal of Materials Chemistry, 2011, 21(42): 16675-16685.

[38] HARPER M M, MCKEATING K S, FAULDS K. Recent developments and future directions in SERS for bioanalysis[J].Physical Chemistry Chemical Physics Pccp, 2013, 15(15): 5312-5328.

[39] KNEIPP K, KNEIPP H, KARTHA V B, et al. Detection and identification of single DNA base molecule using surface enhanced Raman scattering (SERS)[J]. Physical Review E(Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics), 1998, 57(06): R6281-R6284.

[40] MOSKOVITS M. Surface-enhanced Raman spectroscopy: a brief retrospective[J]. Journal of Raman Spectroscopy, 2010, 36(6-7): 485-496.

[41] LI X, YANG T, LI C S, et al. Prenatal detection of thalassemia by cell-free fetal DNA (cffDNA)in maternal plasma using surface enhanced Raman spectroscopy combined with PCR[J].Biomedical Optics Express, 2018, 9(7): 3167-3176.

[42] KIM W, LEE S H, KIM J H, et al. Paper-based surface-enhanced Raman spectroscopy for diagnosing prenatal diseases in Women[J]. Acs Nano, 2018, 12(7): 7100-7108.

[43] LIN D, ZHENG Z, WANG Q, et al.Label-free optical sensor based on red blood cells laser tweezers Raman spectroscopy analysis for ABO blood typing[J].Optics Express, 2016, 24(21): 24750-24759.

[44] LIN D, GONG T, HONG Z Y, et al. Metal carbonyls for the biointerference-free ratiometric surface-enhanced aman spectroscopy-based assay for cell-free circulating DNA of Epstein-Barr Virus in blood[J]. Analytical Chemistry, 2018, 90(12): 7139-7147.

林慧晶, 吴琼, 徐两蒲, 孙艳, 林多, 陈冠楠, 陈荣. 基于光谱技术的产前检测方法研究进展[J]. 激光生物学报, 2019, 28(1): 13. LIN Huijing, WU Qiong, XU Liangpu, SUN Yan, LIN Duo, CHEN Guannan, CHEN Rong. Prenatal Detection Research Based on Spectroscopic Technology[J]. Acta Laser Biology Sinica, 2019, 28(1): 13.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!