International Journal of Extreme Manufacturing, 2020, 2 (2): 022003, Published Online: Jan. 28, 2021   

Ultraprecision intersatellite laser interferometry

Author Affiliations
1 MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
2 Tianqin Research Center for Gravitational Physics and School of Physics and Astronomy, Sun Yat-sen University (Zhuhai Campus), Zhuhai 519082, People's Republic of China
Abstract
Precision measurement tools are compulsory to reduce measurement errors or machining errors in the processes of calibration and manufacturing. The laser interferometer is one of the most important measurement tools invented in the 20th century. Today, it is commonly used in ultraprecision machining and manufacturing, ultraprecision positioning control, and many noncontact optical sensing technologies. So far, the state-of-the-art laser interferometers are the ground-based gravitational-wave detectors, e.g. the Laser Interferometer Gravitational-wave Observatory (LIGO). The LIGO has reached the measurement quantum limit, and some quantum technologies with squeezed light are currently being tested in order to further decompress the noise level. In this paper, we focus on the laser interferometry developed for space-based gravitational-wave detection. The basic working principle and the current status of the key technologies of intersatellite laser interferometry are introduced and discussed in detail. The launch and operation of these large-scale, gravitational-wave detectors based on space-based laser interferometry is proposed for the 2030s.
References

[1] LIGO 2020 (www.ligo.caltech.edu/)

[2] LISA 2020 (www.lisamission.org/)

[3] Ni W T 2013 Astrod-gw: overview and progress Int. J. Mod. Phys. D 22 1341004

[4] Luo J et al 2016 TianQin: a space-borne gravitational wave detector Class. Quantum Grav. 33 035010

[5] Hu W R and Wu Y L 2017 The Taiji program in space for gravitational wave physics and the nature of gravity Natl Sci. Rev. 4 685–6

[6] Kawamura S et al 2006 The Japanese space gravitational wave antenna—DECIGO Class. Quantum Grav. 23 S125–31

[7] Roberts M, Taylor P and Gill P 1999 Laser linewidth at the sub-hertz level NPL Report CLM 8 National Physics Laboratory

[8] Sullivan D B, Allan D W, Howe D A and Walls F L 1990 Characterization of Clocks and Oscillators (Boulder, CO: National Institute of Standards and Technology)

[9] Danzmann K and Rüdiger A 2003 LISA technology—concept, status, prospects Class. Quantum Grav. 20 S1–S9

[10] Danzmann K and Prince T 2011 LISA Assessment Study Report (Yellow Book) ESA/SRE(2011)3 European Space Agency

[11] Sheard B S, Gray M B, McClelland D E and Shaddock D A 2003 Laser frequency stabilization by locking to a LISA arm Phys. Lett. A 320 9–21

[12] Shaddock D A, Ware B, Spero R E and Vallisneri M 2004 Postprocessed time-delay interferometry for LISA Phys. Rev. D 70 081101

[13] Kane T J and Byer R L 1985 Monolithic, unidirectional single-mode Nd:YAG ring laser Opt. Lett. 10 65–67

[14] Hildebrand U, Lange R and Smutny B 2006 Fiber-optic components for the laser communication terminal on TerraSAR-X 16 PPT online (https://photonics. gsfc.nasa.gov/)

[15] Muehlnikel G, K¨ampfner H, Heine F, Zech H, Troendle D, Meyer R and Phillip-May S 2012 The alphasat GEO laser communication terminal flight acceptance tests Proc. Int. Conf. on Space Optical Systems and Applications (Ajaccio, Corsica, France)

[16] Armano M et al 2016 Sub-femto-g free fall for space-based gravitational wave observatories: LISA pathfinder results Phys. Rev. Lett. 116 231101

[17] Abich K et al 2019 In-orbit performance of the GRACE follow-on laser ranging interferometer Phys. Rev. Lett. 123 031101

[18] Freitag I, Tünnermann A and Welling H 1995 Power scaling of diode-pumped monolithic Nd:YAG lasers to output powers of several watts Opt. Commun. 115 511–5

[19] Tr?bs M 2005 Laser Development and Stabilization for the Spaceborne Interferometric Gravitational Wave Detector LISA (Hannover: Universit¨at Hannover)

[20] Tr?bs M, d'Arcio L, Heinzel G and Danzmann K 2009 Frequency stabilization and actuator characterization of an ytterbium-doped distributed-feedback fiber laser for LISA J. Opt. Soc. Am. B 26 1137–40

[21] Numata K, Chen J R and Camp J 2010 Fiber laser development for LISA J. Phys. Conf. Ser. 228 012043

[22] Numata K and Camp J 2012 Experimental performance of a single-mode ytterbium-doped fiber ring laser with intracavity modulator Laser Phys. Lett. 9 575–80

[23] Numata K, Camp J, Krainak M A and Stolpner L 2010 Performance of planar-waveguide external cavity laser for precision measurements Opt. Express 18 22781–8

[24] Numata K and Camp J 2012 Precision laser development for interferometric space missions NGO, SGO, and GRACE follow-on J. Phys. Conf. Ser. 363 012054

[25] Camp J, Numata K and Krainak M 2017 Progress and plans for a US laser system for LISA J. Phys. Conf. Ser. 840 012013

[26] Schwander T et al 2017 New 808 nm high power laser diode pump module for space applications Proc. SPIE 10567 105671C

[27] Traub M, Plum H D, Hoffmann H D and Schwander T 2007 Spaceborne fiber coupled diode laser pump modules for intersatellite communications Proc. SPIE 6736 673618

[28] Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J and Ward H 1983 Laser phase and frequency stabilization using an optical resonator Appl. Phys. B 31 97–105

[29] Black E D 2001 An introduction to Pound–Drever–Hall laser frequency stabilization Am. J. Phys. 69 79–87

[30] Pierce R et al 2012 Stabilized lasers for space applications: a high TRL optical cavity reference system Proc. 2012 Conf. on Lasers and Electro-Optics (San Jose, CA: IEEE) pp 1–2

[31] Nicklaus K et al 2017 High stability laser for next generation gravity missions Proc. SPIE 10563 105632T

[32] D?ringshoff K, Schuldt T, Kovalchuk E V, Stühler J, Braxmaier C and Peters A 2017 A flight-like absolute optical frequency reference based on iodine for laser systems at 1064 nm Appl. Phys. B 123 183

[33] Leibrandt D R, Bergquist J C and Rosenband T 2013 Cavity-stabilized laser with acceleration sensitivity below 10?12 g?1 Phys. Rev. A 87 023829

[34] Leibrandt D R, Thorpe M J, Notcutt M, Drullinger R E, Rosenband T and Bergquist J C 2011 Spherical reference cavities for frequency stabilization of lasers in non-laboratory environments Opt. Express 19 3471–82

[35] Didier A et al 2018 Ultracompact reference ultralow expansion glass cavity Appl. Opt. 57 6470–3

[36] ′Swierad D et al 2016 Ultra-stable clock laser system development towards space applications Sci. Rep. 6 33973

[37] Chen Q F, Nevsky A, Cardace M, Schiller S, Legero T, H¨afner S, Uhde A and Sterr U 2014 A compact, robust, and transportable ultra-stable laser with a fractional frequency instability of 1 × 10?15 Rev. Sci. Instrum. 85 113107

[38] Webster S and Gill P 2011 Force-insensitive optical cavity Opt. Lett. 36 3572–4

[39] Luo Y X, Li H Y, Liang Y R, Duan H Z, Zhang J Y and Yeh H-C 2016 A preliminary prototype of laser frequency stabilization for spaceborne interferometry missions Proc. 2016 European Frequency and Time Forum (York: IEEE) pp 1–4

[40] Elliffe E J et al 2005 Hydroxide-catalysis bonding for stable optical systems for space Class. Quantum Grav. 22 S257–67

[41] Luo Y X, Li H Y and Yeh H C 2016 Note: digital laser frequency auto-locking for inter-satellite laser ranging Rev. Sci. Instrum. 87 056105

[42] Arie A, Schiller S, Gustafson E K and Byer R L 1992 Absolute frequency stabilization of diode-laser-pumped Nd:YAG lasers to hyperfine transitions in molecular iodine Opt. Lett. 17 1204–6

[43] Nakagawa K, Shimo-oku A, Nakagawa K and Musha M 2016 Developments of highly frequency and intensity stabilized lasers for space gravitational wave detector decigo/pre-decigo Proc. SPIE 10562 105620H

[44] Acef O and Du Burck F 2019 Nd:YAG laser frequency stabilized for space applications Proc. SPIE 10565 1056568

[45] Zang E J, Cao J P, Li Y, Li C Y, Deng Y K and Gao C Q 2007 Realization of four-pass I2 absorption cell in 532-nm optical frequency standard IEEE Trans. Instrum. Meas. 56 673–6

[46] Gohlke M, Schuldt T, D?ringshoff K, Peters A, Johann U, Weise D and Braxmaier C 2015 Adhesive bonding for optical metrology systems in space applications J. Phys. Conf. Ser. 610 012039

[47] Schkolnik V et al 2017 JOKARUS-design of a compact optical iodine frequency reference for a sounding rocket mission EPJ Quantum Technol. 4 9

[48] Jennrich O, Stebbins R T, Bender P L and Pollack S 2001 Demonstration of the LISA phase measurement principle Class. Quantum Grav. 18 4159–64

[49] Pollack S E, Jennrich O, Stebbins R T and Bender P 2003 Status of LISA phase measurement work in the US Class. Quantum Grav. 20 S193–9

[50] Pollack S E and Stebbins R T 2006 Demonstration of the zero-crossing phasemeter with a LISA test-bed interferometer Class. Quantum Grav. 23 4189–200

[51] Ware B, Folkner W M, Shaddock D, Spero R, Halverson P, Harris I and Rogstad T 2006 Phase measurement system for inter-spacecraft laser metrology Proc. 2006 Earth Science Technology Conf. (Maryland, MD: NASA)

[52] Hsu M T, Littler I C M, Shaddock D A, Herrmann J, Warrington R B and Gray M B 2010 Subpicometer length measurement using heterodyne laser interferometry and all-digital rf phase meters Opt. Lett. 35 4202–4

[53] De Vine G, Rabeling D S, Slagmolen B J J, Lam T T Y, Chua S, Wuchenich D M, McClelland D E and Shaddock D A 2009 Picometer level displacement metrology with digitally enhanced heterodyne interferometry Opt. Express 17 828–37

[54] Wand V, Guzm′an F, Heinzel G and Danzmann K 2006 LISA phasemeter development AIP Conf. Proc. 873 689–96

[55] Bykov I, Delgado J E, Marín A F G, Heinzel G and Danzmann K 2009 LISA phasemeter development: advanced prototyping J. Phys. Conf. Ser. 154 012017

[56] Gerberding O, Sheard B, Bykov I, Kullmann J, Delgado J J E, Danzmann K and Heinzel G 2013 Phasemeter core for intersatellite laser heterodyne interferometry: modelling, simulations and experiments Class. Quantum Grav. 30 235029

[57] Schwarze T S, Gerberding O, Cervantes F G, Heinzel G and Danzmann K 2014 Advanced phasemeter for deep phase modulation interferometry Opt. Express 22 18214–23

[58] Gerberding O et al 2015 Readout for intersatellite laser interferometry: measuring low frequency phase fluctuations of high-frequency signals with microradian precision Rev. Sci. Instrum. 86 074501

[59] Schwarze T S, Barranco G F, Penkert D, Kaufer M, Gerberding O and Heinzel G 2019 Picometer-stable hexagonal optical bench to verify LISA phase extraction linearity and precision Phys. Rev. Lett. 122 081104

[60] Burnett M C 2010 Development of an ultra-precise digital phasemeter for the LISA gravitational wave detector Thesis Lulea University of Technology

[61] Liang Y R, Duan H Z, Yeh H C and Luo J 2012 Fundamental limits on the digital phase measurement method based on cross-correlation analysis Rev. Sci. Instrum. 83 095110

[62] Liang Y R, Duan H Z, Xiao X L, Wei B B and Yeh H C 2015 Note: inter-satellite laser range-rate measurement by using digital phase locked loop Rev. Sci. Instrum. 86 016106

[63] Liang Y R 2018 Note: a new method for directly reducing the sampling jitter noise of the digital phasemeter Rev. Sci. Instrum. 89 036106

[64] Liu H S, Dong Y H, Li Y Q, Luo Z R and Jin G 2014 The evaluation of phasemeter prototype performance for the space gravitational waves detection Rev. Sci. Instrum. 85 024503

[65] Liu H S, Luo Z R and Jin G 2018 The development of phasemeter for Taiji space gravitational wave detection Microgravity Sci. Technol. 30 775–81

[66] McNamara P W 2005 Weak-light phase locking for LISA Class. Quantum Grav. 22 S243–7

[67] Danzmann K 2017 LISA—Laser Interferometer Space Antenna: A Proposal in Response to the ESA Call for L3 Mission Concepts (Hannover: Leibniz Universitat Hannover and Max Planck Institute for Gravitational Physics)

[68] Diekmann C, Steier F, Sheard B, Heinzel G and Danzmann K 2009 Analog phase lock between two lasers at LISA power levels J. Phys. Conf. Ser. 154 012020

[69] Photonics Enclycopedia 2020 (www.rp-photonics.com/ beam_divergence.html)

[70] Bender P L 2000 LISA–Laser interferometer space antenna: a cornerstone mission for the observation of gravitational waves Report ESA-SCI(2000)11 European Space Agency

[71] Enloe L H and Rodda J L 1965 Laser phase-locked loop Proc. IEEE 53 165–6

[72] Ramos R T and Seeds A J 1990 Delay, linewidth and bandwidth limitations in optical phase-locked loop design Electron. Lett. 26 389–91

[73] Win M Z, Chen C C and Scholtz R A 1991 Optical phase-locked loop for free-space laser communications with heterodyne detection Proc. SPIE 1417 42–52

[74] Santarelli G, Clairon A, Lea S N and Tino G M 1994 Heterodyne optical phase-locking of extended-cavity semiconductor lasers at 9 GHz Opt. Commun. 104 339–44

[75] Le Gou?t J, Kim J, Bourassin-Bouchet C, Lours M, Landragin A and dos Santos F P 2009 Wide bandwidth phase-locked diode laser with an intra-cavity electro-optic modulator Opt. Commun. 282 977–80

[76] Xu Z X, Zhang X, Huang K K and Lu X H 2012 A digital optical phase-locked loop for diode lasers based on field programmable gate array Rev. Sci. Instrum. 83 093104

[77] Liao A C, Ni W T and Shy J T 2002 Pico-watt and femto-watt weak-light phase locking Int. J. Mod. Phys. D 11 1075–85

[78] Ye J and Hall J L 1999 Optical phase locking in the microradian domain: potential applications to NASA spaceborne optical measurements Opt. Lett. 24 1838–40

[79] McNamara P W, Ward H and Hough J 1998 Laser phase-locking techniques for LISA: experimental status AIP Conf. Proc. 456 143–7

[80] Dick G J, Tu M R, Strekalov M D, Birnbaum K and Yu N 2008 Optimal phase lock at femtowatt power levels for coherent optical deep-space transponder IPN Prog. Rep. 42 1–17

[81] Francis S P, Lam T T Y, McKenzie K, Sutton A J, Ward R L, McClelland D E and Shaddock D A 2014 Weak-light phase tracking with a low cycle slip rate Opt. Lett. 39 5251–4

[82] Viterbi A J 1966 Phase-locked-loop behavior in the presence of noise Principles of Coherent Communication (New York: McGraw-Hill) pp 77–120

[83] Tolker-Nielsen T and Oppenhauser G 2002 In-orbit test result of an operational optical intersatellite link between ARTEMIS and SPOT4, SILEX Proc. SPIE 4635 1–15

[84] Jono T et al 2006 OICETS on-orbit laser communication experiments Proc. SPIE 6105 610503

[85] Sheard B S, Heinzel G, Danzmann K, Shaddock D A, Klipstein W M and Folkner W M 2012 Intersatellite laser ranging instrument for the GRACE follow-on mission J. Geod. 86 1083–95

[86] Yeh H C, Yan Q Z, Liang Y R, Wang Y and Luo J 2011 Intersatellite laser ranging with homodyne optical phase locking for Space Advanced Gravity Measurements mission Rev. Sci. Instrum. 82 044501

[87] Heinzel G et al 2004 The LTP interferometer and phasemeter Class. Quantum Grav. 21 S581–7

[88] Cirillo F and Gath P F 2009 Control system design for the constellation acquisition phase of the LISA mission J. Phys. Conf. Ser. 154 012014

[89] Wuchenich D M R et al 2014 Laser link acquisition demonstration for the GRACE Follow-On mission Opt. Express 22 11351–66

[90] Luo Z R, Wang Q L, Mahrdt C, Goerth A and Heinzel G 2017 Possible alternative acquisition scheme for the gravity recovery and climate experiment follow-on-type mission Appl. Opt. 56 1495–500

[91] Zhang J Y, Ming M, Jiang Y Z, Duan H Z and Yeh H C 2018 Inter-satellite laser link acquisition with dual-way scanning for Space Advanced Gravity Measurements mission Rev. Sci. Instrum. 89 064501

[92] Manojlovi′c L M 2011 Quadrant photodetector sensitivity Appl. Opt. 50 3461–9

Min Ming, Yingxin Luo, Yu-Rong Liang, Jing-Yi Zhang, Hui-Zong Duan, Hao Yan, Yuan-Ze Jiang, Ling-Feng Lu, Qin Xiao, Zebing Zhou, Hsien-Chi Yeh. Ultraprecision intersatellite laser interferometry[J]. International Journal of Extreme Manufacturing, 2020, 2(2): 022003.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!