应用激光, 2017, 37 (6): 779, 网络出版: 2018-01-10   

工艺参数及热处理对选区激光熔化Ti6Al4V性能的影响研究

Effects of Process Parameters and Post-heat Treatment on the Properties of Selective Laser Melted Ti6Al4V
作者单位
1 华南理工大学材料科学与工程学院, 广东 广州510640
2 广东省新材料研究所 广东省现代表面工程技术重点实验室 现代材料表面工程技术国家工程实验室, 广东 广州510651
摘要
探索不同激光加工参数对选区激光熔化成形Ti6Al4V质量的影响从而得到最佳工艺参数, 在此基础上研究不同热处理工艺对选区激光熔化成形Ti6Al4V力学性能的影响。在230、280 W两种功率下设计5种不同的扫描间距, 并改变功率和扫描速度以获得7种不同的线能量密度。设计三组热处理工艺, 分别为625、950 ℃保温30 min炉冷, 950、1 080 ℃保温30 min水冷以及950、1 080 ℃保温30 min水冷后时效。进行金相观察、硬度测量以及拉伸试验, 用电子探针观查断口形貌。结果: 280 W下的致密度最高达到99.96%。P=150 W, V=1 250 mm/s时试样侧面的粗糙度最低为20.7 μm。950 ℃退火后针状马氏体变成粗大的片状α板条组织, 950 ℃固溶时效后生成等轴α相以及α的混合组织。硬度最高达到418 HV0.3。利用最佳工艺成形Ti6Al4V后, 950 ℃保温30 min并炉冷可以得到较好的综合力学性能。
Abstract
To investigate the effects of different selective laser melting (SLM) parameters on forming qualities of SLM Ti6Al4V, and obtain the optimum process parameters. After that, to study the influences of different heat treatments on mechanical properties of SLM produced Ti6Al4V. Five different scan distances were used with the power of 230 W and 280 W. Seven line energy densities were designed via changing the power and scanning speed. Three groups of heat treatment processes including 625 ℃ and 950 ℃ annealing, 950 ℃ and 1 080 ℃ solution, 950 ℃ and 1 080 ℃ solution aging were applied. Microstructure and property analyses including metallographic observations, microhardness and tensile test were carried out. The density in power of 280 W reaches to 99.96%. The lowest roughness of side is 20.7 μm. The microstructure changed from acicular martensite to lath-shaped α after 950 ℃ annealing treatment. A mixed phase consisting of a few equiaxial α and α+β was observed after 950 ℃ solution aging treatment. The value of highest microhardness after heattreatment was 418 HV0.3. The heattreatment based on optimal parameters has a negligible promotion on properties of Ti6Al4V alloy but it can refine microhardness or increase its ductility.
参考文献

[1] MORGAN R H, PAPWORTH A J, SUTCLIFFE C, et al.High density net shape components by direct laser re-melting of single-phase powders[J].J.Mater.Sci., 2002, 37(15):3093-3100.

[2] WONG K V, HERNANDEZ A.A review of additive manufacturing[J].ISRN Mechanical Engineering, 2012(2012): 1-10.

[3] YADROITSEV I, BERTRAND P, LAGET B, et al.Application of laser assisted technologies for fabrication of functionally graded coatings and objects for the international thermonuclear experimental reactor components[J].J Nucl Mater, 2007, 362:189-96.

[4] ROCHUS P, PLESSERIA J Y, VAN ELSEN M, et al.New applications of rapid prototyping and rapid manufacturing (RP/RM) technologies for space instrumentation[J].Acta Astronautica, 2007(61): 352-359.

[5] BERZINS M, CHILDS THC, RYDER G R.The selective laser sintering of polycarbonate[J].CIRP Ann-Manuf Techn., 1996(45): 187-190.

[6] WILKES J, HAGEDORN Y C, MEINERS W, et al.Additive manufacturing of ZrO2-Al2O3 ceramic components by selective laser melting[J].Rapid Prototyping J., 2013(19): 51-57.

[7] WEHMOLLER M, WARNKE P H, ZILIAN C, et al.Implant design and production - a new approach by selective laser melting[J].CARS 2005: Int. J. Comput. Ass. Rad., 2005: 690-695.

[8] 张庆福, 刘刚, 刘国勤.个体化3D打印钛合金下颌骨植入体的设计制作与临床应用[J].口腔医学研究, 2015(1): 48-51.

    ZHANG QINGFU, LIU GANG, LIU GUOQING.Design, Manufacture and Application of Individual Mandible Titanium Alloy Implant Based on Three Dimensional Printing [J].Journal of Oral Science Research, 2015(1): 48-51.

[9] SONG B, DONG S, ZHANG B, et al.Effects of processing parameters on microstructure and mechanical property of selective laser melted Ti6Al4V[J].Mater Design, 2012(35): 120-124.

[10] ZHOU Y, WEN S F, SONG B, et al.A novel titanium alloy manufactured by selective laser melting: microstructure, high temperature oxidation resistance[J].Mater Design, 2016(89): 1199-204.

[11] GU D, SHEN Y.Processing conditions and microstructural features of porous 316L stainless steel components by DMLS[J].Appl Surf Sci., 2008(255): 1880-1887.

[12] 吴伟辉, 杨永强, 王迪.选区激光熔化成型过程的球化现象[J].华南理工大学学报(自然科学版), 2010, 38(5): 110-115.

[13] 梁晓康, 董鹏, 陈济轮, 等.激光选区熔化成形Ti-6Al-4V钛合金的显微组织及性能[J].应用激光, 2014(2): 101-104.

    LIANG XIAOKANG, DONG PENG, CHEN JILUN, et al.Microctructure and properties of selective laser melting Ti6Al4V alloy[J].Applied Laser, 2014(2): 101-104.

[14] 甘章华, 梁宇, 王锦林, 等.热处理工艺对TC4钛合金组织及硬度的影响[J].金属热处理, 2014, 39(9): 36-40.

    GAN ZHANGHUA, LIANG YU, WANG JINLIN, et al.Effects of heat treatment process on microstructure and hardness of TC4 titanium alloy[J].Heattreatment of Metals, 2014, 39(9): 36-40.

[15] 张霜银.激光快速成形TC4钛合金的组织和力学性能研究 [D].西安: 西北工业大学, 2006.

    ZHANG SHUANGYIN.Research on micorstructures and porperties of Ti6Al4V titanium alloy in laser rapid forming processing[D].Xian: Northwestern Polytechnical University, 2006.

[16] STEFANSSON N, SEMIATIN S L.Mechanisms of globularization of Ti-6Al-4V during static heat treatment[J].Metall. Mater. Transa., 2003(34): 691-698.

[17] VRANCKEN B, THIJS L, KRUTH J P, et al.Heat treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and mechanical properties[J].J. Alloy Compd., 2012(541): 177-185.

[18] 张霜银, 林鑫, 陈静, 等.热处理对激光立体成形TC4残余应力的影响[J].稀有金属材料与工程, 2009, 38(5): 774-778.

[19] 王群娇.有色金属热处理技术[M].北京: 化学工业出版社, 2008: 294.

[20] LI HUAIXUE, HUANG BAIYING, SUN FAN, et al.Microstructure and tensile properties of Ti-6Al-4V alloys fabricated by selective laser melting[J].Rare. Metal. Mat. Eng., 2013, 42(s2): 209-212.

李敬, 刘敏, 马文有, 曾德长. 工艺参数及热处理对选区激光熔化Ti6Al4V性能的影响研究[J]. 应用激光, 2017, 37(6): 779. Li Jing, Liu Min, Ma Wenyou, Zeng Dechang. Effects of Process Parameters and Post-heat Treatment on the Properties of Selective Laser Melted Ti6Al4V[J]. APPLIED LASER, 2017, 37(6): 779.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!