中国激光, 2016, 43 (4): 0403003, 网络出版: 2016-03-29   

扫描策略对金属粉末选区激光熔化温度场的影响 下载: 875次

Temperature Field During Selective Laser Melting of Metal Powder Under Different Scanning Strategies
作者单位
南京理工大学机械工程学院, 江苏 南京 210094
摘要
针对岛式扫描策略进行三维有限元仿真,并采用蛇形扫描方式进行对比。综合考虑热传导、热辐射和热对流效应,合金材料热物理性能参数与温度的非线性关系及相变潜热的影响,建立了三维瞬态金属选区激光熔化(SLM)有限元模型。分析结果表明,SLM 成形过程中,熔池呈水滴状,前端温度等值线比后端细密。与蛇形扫描方式相比,岛式扫描方式下岛屿边缘会出现温度二次升高现象,试件整体温度场分布均匀,有利于减小应力集中。温度场特点直接影响β相柱状晶的大小,岛式扫描方式更易形成较粗的β相柱状晶。分区扫描对岛屿边界影响较为明显,与岛屿内部相比,相邻的岛屿间搭接质量较差。
Abstract
Three-dimensional finite element simulation is used to investigate the temperature field with the island scanning strategy paralleled with the S-shaped scanning strategy. Considering the influence of heat conduction, heat radiation and heat convection, nonlinear relationship between thermophysical properties of metal material and temperature, and enthalpy processing utilizing latent heat of phase change, we established a finite element model of metal selective laser melting (SLM) is established. It is found that the molten pool is in the shape of a water droplet, and the temperature contour at front-end is denser than that at back-end. Compared with the S-shaped scanning strategy, island scanning has the phenomenon of secondary temperature elevation at the island edge. The whole temperature field of the model is uniform, which is beneficial to reducing the stress concentration. It was observed that the average width of the β phase in the samples built with the island scanning strategy is significantly larger than that with the S-shaped scanning strategy. The influence of the island scanning on the boundary of the islands is quality of overlapping areas, and the overlap between adjacent islands is poor.
参考文献

[1] Kruth J P, Vandenbroucke B, Vaerenbergh J, et al.. Benchmarking of different SLS/SLM processes as rapid manufacturing techniques [C]. Proceedings of the International Conference on Polymers & Moulds Innovations, 2005: 1-7.

[2] Kruth J P, Mercelis P, Van Vaerenbergh J, et al.. Binding mechanisms in selective laser sintering and selective laser melting[J]. Rapid Prototyping Journal, 2005, 11(1): 26-36.

[3] 杨永强, 王迪, 吴伟辉. 金属零件选区激光熔化直接成型技术研究进展[J]. 中国激光, 2011, 38(6): 0601007.

    Yang Yongqiang, Wang Di, Wu Weihui. Research progress of direct manufacturing of metal parts by selective laser melting[J]. Chinese J Lasers, 2011, 38(6): 0601007.

[4] Mercelis P, Kruth J P. Residual stresses in selective laser sintering and selective laser melting[J]. Rapid Prototyping Journal, 2006, 12 (5): 254-265.

[5] 张凯, 刘婷婷, 张长东, 等. 基于熔池数据分析的激光选区熔化成形件翘曲变形行为研究[J]. 中国激光, 2015, 42(9): 0903007.

    Zhang Kai, Liu Tingting, Zhang Changdong, et al.. Study on deformation behavior in selective laser melting based on the analysis of the melt pool data[J]. Chinese J Lasers, 2015, 42(9): 0903007.

[6] Kolossov S, Boillat E, Glardon R, et al.. 3D FE simulation for temperature evolution in the selective laser sintering process[J]. International Journal of Machine Tools & Manufacture, 2004, 44(2): 117-123.

[7] Krol T A, Seidel C, Schilp J, et al.. Verification of structural simulation results of metal-based additive manufacturing by means of neutron diffraction[J]. Physics Procedia, 2013, 41: 849-857.

[8] Krauss H, Zaeh M F. Investigations on manufacturability and process reliability of selective laser melting[J]. Physics Procedia, 2013, 41: 815-822.

[9] 王池林, 杨永强, 吴伟辉. Ti-Ni合金选区激光熔化快速成型基础实验研究[J]. 中国激光, 2007, 34(s1): 190-195.

    Wang Chilin, Yang Yongqiang, Wu Weihui. Experimental study on rapid prototyping of Ti-Ni alloy by selective laser melting[J]. Chinese J Lasers, 2007, 34(s1): 190-195.

[10] Bechmann F, Henzler J. Production and quality control of aeronautical parts manufactured by LaserCUSING [C]. Eucomas Conference, 2009.

[11] Hussein A, Hao L, Yan C, et al.. Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting[J]. Materials and Design, 2013, 52: 638-647.

[12] 姚化山, 史玉升, 章文献, 等. 金属粉末选区激光熔化成形过程温度场模拟[J]. 应用激光, 2007, 27(6): 456-460.

    Yao Huashan, Shi Yusheng, Zhang Wenxian, et al.. Numerical simulation of the temperature field in selective laser melting[J]. Applied Laser, 2007, 27(6): 456-460.

[13] Simonelli M. Microstructure evolution and mechanical properties of selective laser melted Ti-6Al-4V[D]. Loughborough: Loughborough University, 2014: 152-153.

[14] Zaeh M F, Branner G. Investigations on residual stresses and deformations in selective laser melting[J]. Production Engineering, 2010, 4(1): 35-45.

陈德宁, 刘婷婷, 廖文和, 张长东, 张凯. 扫描策略对金属粉末选区激光熔化温度场的影响[J]. 中国激光, 2016, 43(4): 0403003. Chen Dening, Liu Tingting, Liao Wenhe, Zhang Changdong, Zhang Kai. Temperature Field During Selective Laser Melting of Metal Powder Under Different Scanning Strategies[J]. Chinese Journal of Lasers, 2016, 43(4): 0403003.

本文已被 14 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!