强激光与粒子束, 2019, 31 (1): 012001, 网络出版: 2019-04-28  

大功率脉冲氙灯用稀土钨电极工作表面分析

Surface analysis after working with rare earth tungsten electrode for high-power pulsed Xenon lamp
作者单位
1 北京工业大学 材料科学与工程, 北京 100022
2 中国工程物理研究院 核物理与化学研究所, 四川 绵阳 621900
摘要
为探讨电极表面发生变化的原因和烧蚀机理, 为提升电极工作稳定性提供理论依据, 分析了经过上万发次点灯测试的大功率脉冲氙灯稀土钨电极的表面形貌、元素深度分布及价态。结果表明:工作后的电极表面出现大量裂纹以及烧蚀坑; 表面各元素主要由W,La,O三种元素组成, 分布均匀; 电极表面La以La3+形式存在, W存在原子态和+6价两种价态, 占比分别为18.29%和81.71%; 随刻蚀深度增加后, La的价态仍为+3价, W6+迅速减少直至W价态全部变为W0。
Abstract
The material selected for the experiment is the high power pulsed Xenon lamp rare earth tungsten electrode after operation. Analysis of appearance, element distribution and elemental valence of rare earth tungsten electrode surface and etched at different depths. Experimental results show that: After the work, there were many cracks on the surface of the electrode and ablation pits. The elements on the surface were evenly distributed and consisted of three elements: W, La, and O.The electrode surface La exists in the form of La3+, W has two valence states W0 and W6+, where W6+ accounts for the majority; After the ion etching, the valencestate of La is still La3+, W still has two types of W0 and W6+, but W0 accounts for the most; After the etching depth increases, the valence state of tungsten becomes W0.
参考文献

[1] 向世清. 激光驱动核聚变研究进展[J]. 科学, 2014, 66(5): 22-25. (Xiang Shiqing. Progress in laser driven nuclear fusion research. Science, 2014, 66(5): 22-25)

[2] 林尊琪. 激光核聚变的发展[J]. 中国激光, 2010, 37(9): 2202-2207. (Lin Zunqi. Development of laser nuclear fusion. Chinese Journal of Lasers 2010, 37(9): 2202-2207)

[3] 张林, 杜凯. 激光惯性约束聚变靶技术现状及其发展趋势[J]. 强激光与粒子束, 2013, 25(12): 3091-3097. ( Zhang Lin, Du Kai. Current situation and development trend of laser inertial restricted fusion target technology. High Power Laser and Particle Beams, 2013, 25(12): 3091-3097)

[4] 郑万国, 邓颖, 周维, 等. 激光聚变研究中心激光技术研究进展[J]. 强激光与粒子束, 2013, 25(12): 3082-3090. (Zheng Wanguo, Deng Ying, Zhou Wei, et al. Progress in laser technology research center. High Power Laser and Particle Beams, 2013, 25(12): 3082-3090)

[5] 刘建军, 李海兵, 郭向朝, 等. 高功率氙灯脉冲放电过程中石英管壁热损伤机理[J]. 强激光与粒子束, 2014, 26: 082004. (LiuJianjun, Li Haibing, GuoXiangchao, et al. Thermal damage mechanism of quartz tube wall during pulse discharge of high power Xenon lamp. High Power Laser and Particle Beams, 2014, 26: 082004)

[6] 马永波, 彭述明, 龙兴贵, 等. 影响高功率脉冲氙灯寿命的因素[J]. 强激光与粒子束, 2010, 22(10): 2483-2486. (Ma Yongbo, Peng Shuming, Long Xinggui, et al. Factors affecting the life of high power pulse xenon lamp. High Power Laser and Particle Beams, 2010, 22(10): 2483-2486)

[7] 李鹏, 杨建参, 李岩. 几种氙灯用钨阴极抗烧蚀性能的研究[J]. 中国钨业, 2017, 32(3): 59-64. (Li Peng, Yang Jiancan, Li Yan. Study on the corrosion resistance of tungsten cathode for several Xenon lamps. Chinese Tungsten Industry, 2017, 32(3): 59-64)

[8] 吴佳玮, 韩若愚, 丁卫东, 等. 长寿命铜钨合金气体开关电极的烧蚀形貌[J]. 中国电机工程学报, 2017, 37(8): 2465-2478. (Wu Jiawei, Han Ruoyu, Ding Weidong, et al. The ablation morphology of long-lived copper tungsten alloy gas switch electrode. Proceedings of the CSEE, 2017, 37(8): 2465-2478)

[9] 姚学玲, 曾正中, 陈景亮. 脉冲电弧对钨铜电极表面侵蚀形态的研究[J]. 高电压技术, 2006, 32(7): 21-24. (Yao Xueling, Zeng Zhengzhong, Chen Jingliang, et al. Study on the surface erosion pattern of tungsten copper electrode by pulse arc. High Voltage Engineering, 2006, 32(7): 21-24)

[10] 聂祚仁, 陈颖, 周美玲, 等. 复合稀土氧化物在钨电极中的分布规律和作用机理[J]. 金属学报, 1999(9): 981-984. (Nie Zuoren, Chen Ying, Zhou Meiling, et al. Distribution law and mechanism of composite rare earth oxide in tungsten electrodes. Acta Metallurgica Sinica, 1999(9): 981-984)

[11] 聂祚仁, 周美玲, 张久兴, 等. 稀土钨电极材料研究进展[J]. 材料导报, 1997(5): 19-22. (Nie Zuoren, Zhou Meiling, Zhang Jiuxing, et al. Research progress on rare earth tungsten electrode materials. Materials Review, 1997(5): 19-22)

[12] 周美玲, 聂祚仁, 陈颖, 等. 稀土钨电极研究与应用[J]. 中国钨业, 2000, 15(1): 30-34. (Zhou Meiling, Nie Zuoren, Chen Ying, et al. Research and application of rare earth tungsten electrode. Chinese Tungsten Industry, 2000, 15(1): 30-34)

[13] 杨建参, 聂祚仁, 周美玲, 等. 稀土钨电极材料的研究[J]. 中国钨业, 2007, 22(1): 39-41. (Yang Jiancan, Nie Zuoren, Zhou Meiling, et al. Study on rare earth tungsten electrode materials. Chinese Tungsten Industry, 2007, 22(1): 39-41)

[14] Krasovskii P V, Malinovskaya O S, Samokhin A V, et al. XPS study of surface chemistry of tungsten carbides nanopowders produced through DC thermal plasma/hydrogen annealing process[J]. Applied Surface Science, 2015, 339(1): 46-54.

[15] Poláek J, Maek K, Marek A, et al. Effects of oxygen addition in reactive cluster beam deposition of tungsten by magnetron sputtering with gas aggregation[J]. Thin Solid Films, 2015, 591(s2): 194-199.

[16] Xie F Y, Gong L, Liu X, et al. XPS studies on surface reduction of tungsten oxide nanowire film by Ar+, bombardment[J]. Journal of Electron Spectroscopy & Related Phenomena, 2012, 185(3/4): 112-118.

[17] Sunding M F, Hadidi K, Diplas S, et al. XPS characterisation of in situ, treated lanthanum oxide and hydroxide using tailored charge referencing and peak fitting procedures[J]. Journal of Electron Spectroscopy & Related Phenomena, 2011, 184(7): 399-409.

[18] Zhao M, Lian J, Yu H, et al. Dielectric functions of La-based cuprate superconductors for visible and near-infrared wavelengths[J]. Applied Surface Science, 2017, 421.

[19] Oliveira R C, Hammer P, Guibal E, et al. Characterization of metal-biomass interactions in the lanthanum(III) biosorption on Sargassum sp. using SEM/EDX, FTIR, and XPS: Preliminary studies[J]. Chemical Engineering Journal, 2014, 239(3): 381-391.

[20] Krishnan R V, Mittal V K, Babu R, et al. Heat capacity measurements and XPS studies on uranium-lanthanum mixed oxides[J]. Journal of Alloys & Compounds, 2011, 509(7): 3229-3237.

高志坤, 杨建参, 郝万立, 付宝刚. 大功率脉冲氙灯用稀土钨电极工作表面分析[J]. 强激光与粒子束, 2019, 31(1): 012001. Gao Zhikun, Yang Jiancan, Hao Wanli, Fu Baogang. Surface analysis after working with rare earth tungsten electrode for high-power pulsed Xenon lamp[J]. High Power Laser and Particle Beams, 2019, 31(1): 012001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!