红外与毫米波学报, 2018, 37 (5): 613, 网络出版: 2018-12-26   

在轨超高分辨率傅里叶光谱仪仪器线型函数更新方法研究

Research on the method of updating instrument line shape function of on-orbit fourier ultrahigh resolution spectrometer
作者单位
1 中国科学院安徽光学精密机械研究所, 中国科学院通用光学定标与表征技术重点实验室,安徽 合肥 230031
2 中国科学技术大学,安徽 合肥 230026
摘要
仪器线型函数是傅里叶光谱仪重要的物理表征参数之一, 影响仪器测量光谱的精度.随着空间测量和大气探测等遥感应用在高精度上的需求, 如何实时在轨测量并更新星载光谱仪的仪器线型函数, 成为当前提高在轨超高分辨率光谱仪测量精度的重要手段.以傅里叶型光谱仪为例, 根据仪器线型函数的原理, 利用在轨超高分辨率光谱仪实测太阳光谱定标数据不受大气气溶胶影响且具有独立太阳弗朗和费线的特征, 来对在轨超高分辨率光谱仪的仪器线型函数进行监督和更新.实验以Kurucz太阳光谱模型作为参考光谱, 在对应波段范围内分别选取多条实测太阳定标光谱和参考光谱的特征峰, 通过调整光谱仪的狭缝模型, 对特征峰残差进行迭代对比, 演算出仪器ILS参数变化.最后, 用更新的仪器线型函数与临边理论光谱卷积, 与实测临边定标光谱比较验证, 误差范围在-6%~8%.结果表明, 该方法可为在轨超高分辨率光谱仪仪器线型函数的监督更新提供参考依据.
Abstract
Instrument line shape function (ILS)is one of the important physical characterization parameters of the fourier spectrometer, which affects the accuracy of the spectrometer. With the high-precision demand for remote sensing applications such as space measurement and atmospheric detection, how to measure and update the ILS of the on-orbit spectrometer in real time is an important means to improve the accuracy of on-orbit ultrahigh resolution spectrometer. This paper used Fourier spectrometer as an example, according to the principle of ILS, used the characteristics of the measured solar spectral calibration data of the on-orbit ultrahigh resolution spectrometer, which have independent Fraunhfer line and less influenced by atmospheric aerosols, to monitor and update the ILS of the on-orbit ultrahigh resolution spectrometer. In this paper, the Kurucz solar spectrum model is used as the reference spectrum, the characteristic peaks of the measured solar calibration spectra and reference spectra are selected in the corresponding band, by adjusting the slit model of the spectrometer, the characteristic peak residuals are iteratively compared to calculate the ILS parameters of the instrument. Finally, after making a convolution between the updated ILS and the theoretical limb spectrum, we compared the results with the measured limb calibration spectrum. The error range is-6%~8%. These results show that this method can provide a reference for supervising and updating the ILS of on-orbit ultrahigh resolution spectrometer.
参考文献

[1] Cirilo Bernardo, David W.T. Griffith. Fourier transform spectrometer instrument line shape (ILS) retrieval by Fourier deconvolution[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 95 (2005):141-150.

[2] FrankHase, Thomas Blumenstock. Analysis of the instrumental line shape of high-resolution Fourier transform IR spectrometers with gas cell measurements and new retrieval software[J]. APPLIED OPTICS 20,May 1999 Vol. 38, No. 15.

[3] ZHANG Lei, YANG Min-zhu, ZOU Yao-pu, HAN Chang-pei. Instrument line shape of infrared Fourier transform spectrometer and its engineer applications[J].Optics and Precision Engineering (张磊,杨敏珠,邹曜璞,等.红外傅里叶光谱仪的仪器线形函数及工程应用. 光学 精密工程), 2015,12(2):45-49.

[4] Harig Roland, Rusch Peter, Schfer Klaus, Flores-Jardines, Edgar. Method for on-site determination of the instrument line shape of mobile remote sensing Fourier transform spectrometers[J]. Proceedings of SPIE-The International Society for Optical Engineering, vol 5979, 2005.

[5] XIONG Wei, SHI Hai-liang, YU Neng-hai. Study on a New Method for Instrumental Line Shape Measurement of Spatial Heterodyne Interference Spectrometer[J].Spectroscopy and Spectral Analysis(熊伟,施海亮,俞能海.空间外差干涉光谱仪仪器线型函数测量新方法研究.光谱学与光谱分析), 2015,1 35:267-271.

[6] LIOU K.N.. An Introduction to Atmospheric Radiation (Second Edition)(M). (郭彩丽, 周诗健(译)大气辐射导论(第2版)北京:气象出版社). Beijing: China Meteorological Press 2002:28-33.

[7] Richard A. M. Lee, Christopher W. O’Dell, Debra Wunch, Coleen M. Roehl, et al.. Preflight Spectral Calibration of the Orbiting Carbon Observatory 2[J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017 VOL.55, NO.5.

[8] WU Jin-Guang. Modern Fourier Transform Infrared Spectroscopy and Its Application (Volume 1) (M). Beijing: Science and Technology Literature Press (吴瑾光.近代傅里叶变换红外光谱技术及应用(上卷)北京:科学技术文献出版社) 1994.12:3-46

[9] Té Y.,Jeseck P. Payan, S., et al. The Fourier transform spectrometer of the Université Pierre et Marie Curie QualAir platform[J]. REVIEW OF SCIENTIFIC INSTRUMENTS. 2010 81, 103102.

[10] Kang Sun, Xiong Liu, Caroline R. Nowlan, et al. Characterization of the OCO-2 instrument line shape functions using on-orbit solar measurements [J]. Atmospheric Measurement Techniques. 2017,10, 939-953.

[11] WANG Jun-Feng, DENG Hong-Ping, YI Wei-Ning et al. Application of Matching between Two Kinds of Non-coaxial Remote Sensing Equipment Based on Coastline Area [J]. J. Infrared Millim. Waves(汪俊锋, 邓宏平, 易维宁,等.基于海岸线区域的两类不同轴遥感设备之间匹配应用研究.红外与毫米波学报), 2017,36(4) :439-445.

[12] Michele Meroni, Lorenzo Busetto, Luis Guanter, et al.. Characterization of fine resolution field spectrometers using solar Fraunhofer lines and atmospheric absorpti on features[J]. APPLIED OPTICS. 20 May 2010, 49(15).

[13] Frankenberg C., Pollock R, RAM Lee, et al. The Orbiting Carbon Observatory (OCO-2): Spectrometer performance evaluation using prelaunch direct sun measurements [J]. Atmospheric Measurement Techniques, 2015, 8:301-313.

[14] Franois Chteauneuf, Serge Fortin, Henry Buijs, Marc-André Soucy. On-orbit performance of the ACE-FTS Instrument [J]. Earth Observing Systems IX. Proceedings of SPIE 2004, 5542.

[15] Crisp D. Pollock, H.R.,Rosenberg R.,et al. The on-orbit performance of the Orbiting Carbon Observatory (OCO-2) instrument and its radiometrically calibrated products, Atmospheric Measurement Techniques. Discuss. (2016).

[16] Eldering A, Randy Pollock, Richard Lee, et al. Orbiting Carbon Observatory 2 Level 1B Theoretical Basis Document.[Online]. Available: http://disc.sci.gsfc.nasa.gov/OCO-2/documentation/oco-2-v7/OCO2_L1B_ATBD.V7.pdf, last access: 27 November 2015.

汪俊锋, 叶函函, 易维宁, 陈震霆, 方雪静, 杜丽丽. 在轨超高分辨率傅里叶光谱仪仪器线型函数更新方法研究[J]. 红外与毫米波学报, 2018, 37(5): 613. WANG Jun-Feng, YE Han-Han, YI Wei-Ning, CHEN Zhen-Ting, FANG Xue-Jing, DU Li-Li. Research on the method of updating instrument line shape function of on-orbit fourier ultrahigh resolution spectrometer[J]. Journal of Infrared and Millimeter Waves, 2018, 37(5): 613.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!