中国激光, 2014, 41 (6): 0605009, 网络出版: 2014-04-16   

宽谱光源相对强度噪声及对闭环光纤陀螺影响研究

Relative Intensity Noise Characteristic of Broadband Sources and its Effect on Performance of Closed-Loop Fiber Optic Gyroscope
作者单位
1 精密光机电一体化技术教育部重点实验室北京航空航天大学, 北京 100191
2 惯性技术国防科技重点实验室北京航空航天大学, 北京 100191
3 中航工业西安飞行自动控制研究所, 陕西 西安 710065
摘要
宽谱光源相对强度噪声(RIN)的定量评估及其对光纤陀螺(FOG)性能的影响机理是进一步提高FOG精度的关键问题。搭建实验测试系统对4种不同谱型、不同偏振态宽谱光源的RIN进行了独立测试,基于3种不同等效谱宽定义分别计算4种宽谱光源的RIN,通过对比确定了基于功率加权平均谱宽的强度噪声计算模型;在此基础上,对FOG的随机游走系数(RWC)模型进行了修正。搭建光电分离式高精度FOG实验系统,采用4种光源,分别测试了FOG的RWC,同时利用修正模型估算了RWC,实测值与估算值吻合较好。结果表明,光源的功率加权平均等效谱宽和偏振度是影响宽谱光源RIN的主要因素,该研究为光源RIN的评估和高精度FOG的优化设计提供了重要的理论和实践依据。
Abstract
The accurate evaluation of relative intensity noise (RIN) of broad-band sources and its effect mechanism on a fiber optic gyroscope (FOG) are key factors to further improve the performance of FOGs. An intensity noise measurement system is constructed and RINs of four sources with different spectral shapes and degree of polarizations are tested. Then the RINs are calculated with three different effective bandwidths and the accurate RIN model is confirmed by employing the power weighted average (PWA) bandwidth. Based on this research, the random walk coefficient (RWC) model of FOG is modified. A photoelectric detachment high precision FOG is constructed, and the RWC of FOG is tested with four broadband sources and calculated by using the modified model. It is shown that the calculation results are consistent with the experiment results. This indicates that the power weighted average bandwidth and the degree of polarization are key factors determining the RIN of broadband sources and this research is of great value in evaluating the RIN characteristics of different sources and designing high performance FOGs.
参考文献

[1] P R Morkel, R I Laming, D N Payne. Noise characteristics of high-power Er doped-fiber superluminescent sources[J]. Electron Lett, 1990, 26(2): 96-98.

[2] A Yurek, H Taylor, L Goldberg, et al.. Quantum noise in superluminescent diodes[J]. J Quantum Electron,1986, 22(4): 522-527.

[3] M Tur, E Shafir, K Blotekjaer. Source-induced noise in optical systems driven by low-coherence sources[J]. J Lightwave Technol, 1990, 8(2): 183-189.

[4] W K Burns, R P Moeller, A Dandridge. Excess noise in fiber gyroscope sources[J]. IEEE Photon Technol Lett, 1990, 2(8): 606-608.

[5] Haipeng Yu, Wenyuan Xu, Chunxi Zhang. Relative intensity noise reduction in superfluorescent fiber source based on semiphysical simulation[C]. ICEOE, 2011. 399-402.

[6] Jian Mi, Chunxi Zhang, Zheng Li, et al.. Bias phase and light power dependence of the random walk coefficient of fiber optic gyroscope[J]. Chin Opt Lett, 2006, 4(7): 379-381.

[7] R C Rabelo, R T de Carvalho, J Blake. SNR enhancement of intensity noise-limited FOGs[J]. J Lightwave Technol, 2000, 18(12): 2146-2150.

[8] Herve Lefevre. The Fiber-Optic Gyroscope[M]. Boston London: Artech House, 1993. 21-23.

[9] 张桂才. 光纤陀螺原理与技术[M]. 北京: 国防工业出版社, 2007. 179-208.

    Zhang Guicai. The Principles and Technologies of Fiber-Optic Gyroscope[M]. Beijing: National Defense Industry Press, 2007. 179-208.

[10] Yonggang Zhang, Honggang Chen, Tao Li, et al.. Pre-estimate relative intensity noise subtraction performance of FOG by using signal cross correlation[C]. International Conference on Information and Automation, 2011. 768-771.

[11] R P Moeller, W K Burns, N J Frigo. Open-loop output and scale factor stability in a fiber-optic gyroscope[J]. J Lightwave Technol, 1989, 7(2): 262-269.

[12] Xiyi Huang, Naveen Sarma, Kevin Mark Killian, et al.. Optical Signal Noise Reduction for Fiber Optical Gyroscopes[P]. U S Patent: 5898496, 1999.

[13] Sunghwan Shin, Utkarsh Sharma, Haohua Tu, et al.. Characterization and analysis of relative intensity noise in broadband optical sources for optical coherence tomography[J]. IEEE Photon Technol Lett, 2010, 22(14): 1057-1059.

[14] Sunghwan Shin. Characterization and Comparison of Optical Source Relative Intensity Noise and Effects in Optical Coherence Tomography[D]. Illinois: College of the University of Illinois, 2010. 21-26.

[15] D Baney, W Sorin. Broadband frequency characterization of optical receivers using intensity noise[J]. Hewlett-Packard J, 1995, 46(1): 6-12.

[16] AQ6370 Optical Spectrum Analyzer User′s Manual[S]. Japan: Yokogawa Electric Corporation, 2006. App-7.

[17] 申彤. 工程型掺铒光纤光源关键技术研究[D]. 北京: 北京航空航天大学, 2008. 10-12.

    Shen Tong. Research on Key Technology of Superflourcent Fiber Source for Engineering Application[D]. Beijing: Beihang University, 2008. 10-12.

[18] 王巍. 干涉型光纤陀螺仪技术[M]. 北京: 中国宇航出版社, 2010. 62-63.

    Wang Wei. The Technologies of Interferential Fiber-Optic Gyroscope[M]. Beijing: China Aerospace Press, 2010. 62-63.

索鑫鑫, 杨远洪, 杨明伟, 马海全, 张斌. 宽谱光源相对强度噪声及对闭环光纤陀螺影响研究[J]. 中国激光, 2014, 41(6): 0605009. Suo Xinxin, Yang Yuanhong, Yang Mingwei, Ma Haiquan, Zhang Bin. Relative Intensity Noise Characteristic of Broadband Sources and its Effect on Performance of Closed-Loop Fiber Optic Gyroscope[J]. Chinese Journal of Lasers, 2014, 41(6): 0605009.

本文已被 9 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!