激光与光电子学进展, 2018, 55 (8): 082001, 网络出版: 2018-08-13  

基于模糊不变卷积神经网络的遥感飞机识别 下载: 629次

Remote Sensing Aircraft Recognition Based on Blur-Invariant Convolutional Neural Network
作者单位
上海海事大学信息工程学院, 上海 200135
摘要
提出了一种基于模糊不变卷积神经网络(BICNN)模型的目标识别方法。与传统卷积神经网络(CNN)模型不同,BICNN引入了一种新的模糊不变层。 BICNN通过增加模糊不变约束项及正则化来优化模糊不变目标函数并进行训练; 通过减小模糊不变目标函数值,使得训练样本在模糊前后的特征映射一致,最终实现模糊不变性。测试结果表明,BICNN解决了模糊造成的识别率低的问题,增大了运动模糊图像的识别率。
Abstract
A method of target recognition based on the blur-invariant convolutional neural network (BICNN) model is proposed. The BICNN model introduces a new blur-invariant layer, which is different from the traditional convolutional neural network (CNN )models. BICNN is trained by the adding of the blur-invariant constraint term and the regularization to optimize a blur-invariant objective function. The value of the fuzzy invariant objective function is reduced to make the training samples consistent with the feature maps before and after the blurring, and thus the blur invariance is achieved finally. The test results show that BICNN can solve the problem of a low recognition rate caused by blur and improve the recognition rate of the motion blurred images.
参考文献

[1] Simonyan K, Parkhi O M, Vedaldi A, et al. Fisher vector faces in the wild[C]. Proceedings of the British Machine Vision Conference, 2013: 8.1-8.11.

[2] Nishiyama M, Hadid A, Takeshima H, et al. Facial deblur inference using subspace analysis for recognition of blurred faces[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(4): 838-845.

[3] Yang S J, Ye X, Zhang S J. A new infrared turbulent fuzzy image restoration algorithm based on Gaussian function parameter identification[C]. International Conference on Image, Vision and Computing, 2017: 423-427.

[4] Zhang H, Shu H, Han G N, et al. Blurred image recognition by Legendre moment invariants[J]. IEEE Transactions on Image Processing, 2010, 19(3): 596-611.

[5] 戴修斌, 刘天亮. 基于伪Zernike矩模糊不变量的图像识别算法[J]. 南京邮电大学学报(自然科学版), 2013, 33(3): 50-55.

    Dai X B, Liu T L. Image recognition algorithm by blur invariants of pseudo-Zernike moment[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science), 2013, 33(3): 50-55.

[6] He K, Zhang X, Ren S, et al. Image net classification with deep convolutional neural networks[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.

[7] 刘大伟, 韩玲, 韩晓勇. 基于深度学习的高分辨率遥感影像分类研究[J]. 光学学报, 2016, 36(4): 0428001.

    Liu D W, Han L, Han X Y. High spatial resolution remote sensing image classification based on deep learning[J]. Acta Optica Sinica, 2016, 36(4): 0428001.

[8] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2014-09-04)[2017-12-10]. https:∥arxiv.org/abs/1409.1556.

[9] 解晓康. 基于迁移学习的模糊图像识别技术研究[D]. 武汉: 华中科技大学, 2016.

    Xie X K. Research on blurred image recognition based on transfer learning[D]. Wuhan: Huazhong University of Science and Technology, 2016.

[10] Wang W, Cao Z. Recognition of blurred faces using local phase pattern[J]. Electronics Letters, 2012, 48(20): 1269-1271.

[11] 刘峰, 沈同圣, 马新星. 特征融合的卷积神经网络多波段舰船目标识别[J]. 光学学报, 2017, 37(10): 1015002.

    Liu F, Shen T S, Ma X X. Convolutional neural network based multi-band ship target recognition with feature fusion[J]. Acta Optica Sinica, 2017, 37(10): 1015002.

[12] Schroff F, Kalenichenko D, Philbin J. Facenet: A unified embedding for face recognition and clustering[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 815-823.

[13] 叶国林, 孙韶媛, 高凯珺, 等. 基于加速区域卷积神经网络的夜间行人检测研究[J]. 激光与光电子学进展, 2017, 54(8): 081003.

    Ye G L, Sun S Y, Gao K J, et al. Nighttime pedestrian detection based on faster region convolution neural network[J]. Laser & Optoelectronics Progress, 2017, 54(8): 081003.

[14] Taigman Y, Yang M, Ranzato M A, et al. DeepFace: Closing the gap to human-level performance in face verification[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 1701-1708.

[15] Wang J, Yuan C. Facial expression recognition with multi-scale convolution neural network[C]. Pacific Rim Conference on Multimedia, 2016: 376-385.

[16] Richardson W H. Bayesian-based iterative method of image restoration[J]. Journal of the Optical Society of America,1972, 62(1): 55-59.

[17] Ojansivu V, Heikkil J. Blur insensitive texture classication using local phase quantization[C]. International Conference on Image and Signal Processing, 2008, 5099: 236-243.

[18] 陈洋, 范荣双, 王竞雪, 等. 结合最小噪声分离变换和卷积神经网络的高分辨影像分类方法[J]. 激光与光电子学进展, 2017, 54(10): 102801.

    Chen Y, Fan R S, Wang J X, et al. High resolution image classification method combining with minimum noise fraction rotation and convolution neural network[J]. Laser & Optoelectronics Progress, 2017, 54(10): 102801.

[19] Yu D, Deng L. Deep learning and its applications to signal and information processing[J]. IEEE Signal Processing Magazine, 2011, 28(1): 145-154.

[20] Ji S, Xu W, Yang M, et al. 3D convolutional neural networks for human action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 221-231.

[21] Hu F, Xia G S, Hu J, et al. Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery[J]. Remote Sensing, 2015, 7(11): 14680-14707.

刘坤, 苏彤, 王典. 基于模糊不变卷积神经网络的遥感飞机识别[J]. 激光与光电子学进展, 2018, 55(8): 082001. Liu Kun, Su Tong, Wang Dian. Remote Sensing Aircraft Recognition Based on Blur-Invariant Convolutional Neural Network[J]. Laser & Optoelectronics Progress, 2018, 55(8): 082001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!