光学学报, 2021, 41 (3): 0336001, 网络出版: 2021-02-28  

基于超连续谱的可调谐同步脉冲产生及噪声分析 下载: 1129次

Generation and Noise Analysis of Tunable Synchronized Pulse Based on Supercontinuum
作者单位
1 上海理工大学光电信息与计算机工程学院, 上海 200093
2 华东师范大学精密光谱科学与技术国家重点实验室, 上海 200062
3 华东师范大学重庆研究院, 重庆 401121
4 济南量子技术研究院, 山东 济南 250101
引用该论文

王庆婷, 杨康文, 沈悦, 陈旭, 郝强, 黄坤, 曾和平. 基于超连续谱的可调谐同步脉冲产生及噪声分析[J]. 光学学报, 2021, 41(3): 0336001.

Qingting Wang, Kangwen Yang, Yue Shen, Xu Chen, Qiang Hao, Kun Huang, Heping Zeng. Generation and Noise Analysis of Tunable Synchronized Pulse Based on Supercontinuum[J]. Acta Optica Sinica, 2021, 41(3): 0336001.

参考文献

[1] 张博涵, 郭莉, 姚冽, 等. 受激拉曼散射显微技术用于快速无标记病理成像[J]. 中国激光, 2020, 47(2): 0207018.

    Zhang B H, Guo L, Yao L, et al. Rapid histological imaging using stimulated Raman scattering microscopy[J]. Chinese Journal of Lasers, 2020, 47(2): 0207018.

[2] 李姿霖, 李少伟, 张思鹭, 等. 相干拉曼散射显微技术及其在生物医学领域的应用[J]. 中国激光, 2020, 47(2): 0207005.

    Li Z L, Li S W, Zhang S L, et al. Coherent Raman scattering microscopy technique and its biomedical applications[J]. Chinese Journal of Lasers, 2020, 47(2): 0207005.

[3] 尹君, 林子扬, 屈军乐, 等. 相干反斯托克斯拉曼散射显微成像技术[J]. 中国激光, 2009, 36(10): 2477-2484.

    Yin J, Lin Z Y, Qu J L, et al. Coherent anti-stokes Raman scattering microscopic imaging technique[J]. Chinese Journal of Lasers, 2009, 36(10): 2477-2484.

[4] Forget S, Balembois F, Lucas-Leclin G, et al. Picosecond laser source at 1 MHz with continuous tunability in the visible red band[J]. Optics Communications, 2003, 220(1/2/3): 187-192.

[5] Evans C L, Xie X S. Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine[J]. Annual Review of Analytical Chemistry, 2008, 1(1): 883-909.

[6] Andresen E R, Birkedal V, Thøgersen J, et al. Tunable light source for coherent anti-Stokes Raman scattering microspectroscopy based on the soliton self-frequency shift[J]. Optics Letters, 2006, 31(9): 1328-1330.

[7] 孔德飞, 贾东方, 冯德军, 等. 光纤中的孤子自频移效应[J]. 激光与光电子学进展, 2018, 55(10): 101902.

    Kong D F, Jia D F, Feng D J, et al. Soliton self-frequency shift in optical fibers[J]. Laser & Optoelectronics Progress, 2018, 55(10): 101902.

[8] Freudiger C W, Yang W L, Holtom G R, et al. Stimulated Raman scattering microscopy with a robust fibre laser source[J]. Nature Photonics, 2014, 8(2): 153-159.

[9] Gambetta A, Kumar V, Grancini G, et al. Fiber-format stimulated-Raman-scattering microscopy from a single laser oscillator[J]. Optics Letters, 2010, 35(2): 226-228.

[10] 张会, 王祎, 常胜江. 光子晶体光纤中超连续谱产生的蓝移光谱分析[J]. 光子学报, 2010, 39(11): 1938-1942.

    Zhang H, Wang Y, Chang S J. Blue-shifted spectra of supercontinuum generation in photonic crystal fibers[J]. Acta Photonica Sinica, 2010, 39(11): 1938-1942.

[11] Chemnitz M, Baumgartl M, Meyer T, et al. Widely tuneable fiber optical parametric amplifier for coherent anti-Stokes Raman scattering microscopy[J]. Optics Express, 2012, 20(24): 26583-26595.

[12] 郑世凯, 杨康文, 敖建鹏, 等. 光纤式相干拉曼散射成像光源研究进展[J]. 中国激光, 2019, 46(5): 0508008.

    Zheng S K, Yang K W, Ao J P, et al. Advances in fiber laser sources for coherent Raman scattering microscopy[J]. Chinese Journal of Lasers, 2019, 46(5): 0508008.

[13] Yang K W, Zheng S K, Ye P B, et al. Fiber-based optical parametric oscillator with flexible repetition rates by rational harmonic pumping[J]. Optics Express, 2019, 27(4): 4897-4906.

[14] Yang K W, Shen Y, Ao J P, et al. Passively synchronized mode-locked fiber lasers for coherent anti-Stokes Raman imaging[J]. Optics Express, 2020, 28(9): 13721-13730.

[15] Ozeki Y, Kitagawa Y, Sumimura K, et al. Stimulated Raman scattering microscope with shot noise limited sensitivity using subharmonically synchronized laser pulses[J]. Optics Express, 2010, 18(13): 13708-13719.

[16] Kong C H, Pilger C, Hachmeister H, et al. High-contrast, fast chemical imaging by coherent Raman scattering using a self-synchronized two-colour fibre laser[J]. Light: Science & Applications, 2020, 9(1): 1-12.

[17] Kudlinski A, Barviau B, Leray A, et al. Control of pulse-to-pulse fluctuations in visible supercontinuum[J]. Optics Express, 2010, 18(26): 27445-27454.

[18] Yoshimi H, Sumimura K, Ozeki Y. An Er fiber laser generating multi-milliwatt picosecond pulses with ultralow intensity noise[J]. Japanese Journal of Applied Physics, 2018, 57(10): 108001.

[19] Kim J, Song Y J. Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications[J]. Advances in Optics and Photonics, 2016, 8(3): 465-540.

[20] Huang K, Zeng J, Gan J W, et al. Passive all-optical synchronization for polarization-maintaining mode-locked fiber lasers[J]. Optics Express, 2018, 26(24): 32184-32193.

[21] 徐永钊, 卫艳芬, 任晓敏. 利用色散平坦渐减PCF产生宽带超连续谱[J]. 半导体光电, 2009, 30(2): 194-199.

    Xu Y Z, Wei Y F, Ren X M. Broadband supercontinuum generation in a dispersion-flattened and decreasing PCF[J]. Semiconductor Optoelectronics, 2009, 30(2): 194-199.

[22] Engelsholm R D, Bang O. Supercontinuum noise reduction by fiber undertapering[J]. Optics Express, 2019, 27(7): 10320-10331.

王庆婷, 杨康文, 沈悦, 陈旭, 郝强, 黄坤, 曾和平. 基于超连续谱的可调谐同步脉冲产生及噪声分析[J]. 光学学报, 2021, 41(3): 0336001. Qingting Wang, Kangwen Yang, Yue Shen, Xu Chen, Qiang Hao, Kun Huang, Heping Zeng. Generation and Noise Analysis of Tunable Synchronized Pulse Based on Supercontinuum[J]. Acta Optica Sinica, 2021, 41(3): 0336001.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!