强激光与粒子束, 2013, 25 (6): 1405, 网络出版: 2013-04-23   

GaAs/AlxGa1-xAs量子阱红外探测器微结构研究

Microstructure studies of GaAs/AlxGa1-xAs quantum well infrared photodetector
胡小英 1,2,*刘卫国 1,2
作者单位
1 西安电子科技大学 微电子学院, 西安 710071
2 西安工业大学 光电工程学院, 西安 710032
摘要
采用金属有机物化学气相沉积法生长了两种不同结构参数GaAs/AlxGa1-xAs量子阱材料。利用傅里叶光谱仪分别对势垒中Al组分为0.20,0.30的1#,2#样品进行77 K液氮温度下光谱响应测试。结果显示:1#,2#峰值响应波长为8.38,7.59 μm,而根据薛定谔方程得到峰值波长为9.694,8.134 μm,二者误差分别为13.6%,6.68%。针对误差过大及吸收峰向高能方向发生漂移的现象,利用高分辨透射扫描电镜对样品微观界面结构进行分析,结果显示,样品存在不同程度的位错及不均匀性。结果表明:位错引起AlGaAs与GaAs晶格不匹配,是造成1#误差较大的主要原因;峰值响应波长随势垒中Al组分的降低而增大,说明Al组分减小致使量子阱子带间距离缩小是导致峰值响应波长红移的原因。
Abstract
Two GaAs/AlxGa1-xAs infrared quantum well materials with different structure parameters have been made by using metal organic chemical vapor deposition. The photoresponse spectra are obtained at 77 K by use of Fourier transform spectrometer for two sample-devices of GaAs/AlxGa1-xAs quantum well infrared photodetectors with an Al content of 0.20 and 0.30 respectively. The results show the peak wavelengths of 1# and 2# are 8.38 μm and 7.59 μm, while they are 9.694 μm and 8134 μm according to the Schrdinger equation, and the errors between them are 13.6%, 6.68%, respectively. The crystal structure is investigated by using high-resolution scanning transmission electron microscope to analyse the main reason of the large errors and peak wavelength redshift, which shows that there is thread dislocation and nonuniformity in different degrees. The main reason causing 1# error much larger is the crystal lattice mismatch between AlGaAs and GaAs. The fact that the peak wavelength increases with Al content reducing shows reducing Al content will lead to narrowing of the spacing between subbands and peak wavelength redshift.
参考文献

[1] 苏艳梅,种明,曾一平,等.128×128三电极中/长波双色量子阱红外探测器[J].红外与激光工程, 2012, 41(9):2249-2252.(Su Yanmei, Chong Ming, Zeng Yiping, et al. 128×128 mid-and long-wavelength dual-band quantum well infrared photodetector with three electrodes. Journal of Infrared and Laser Engineering, 2012, 41(9):2249-2252)

[2] Gunapala S D, Bandara S V, Liu J K, et al. 1024×1024 format pixel co-located simultaneously readable dual-band QWIP focal plane[J]. Infrared Physics and Technology, 2009, 52(6):395-398.

[3] 金巨鹏,刘丹,王建新,等.320×256 GaAs/AlGaAs长波红外量子阱焦平面探测器[J].红外与激光工程, 2012, 41(4):833-837.(Jin Jupeng, Liu Dan, Wang Jianxin, et al. 320×256 GaAs/AlGaAs long-wavelength quantum well infrared photodetector focal plane array. Infrared and Laser Engineering, 2012, 41(4):833-837)

[4] 陆卫,李宁,甄红楼,等.红外光电子学中的新族——量子阱红外探测器[J].中国科学G辑, 2009, 39(3):336-343.(Lu Wei, Li Ning, Zhen Honglou, et al. A new group of infrared opto-electronics—quantum well infrared photodetectors. Science in China Series G, 2009, 39(3):336-343)

[5] 霍永恒,马文全,张艳华,等.两端叠层结构的中长波量子阱红外探测器[J].物理学报, 2011, 60:098401.(Huo Yongheng, Ma Wenquan, Zhang Yanhua, et al. Dual-band quantum well infrared photodetectors with two ohmic contacts. Acta Physica Sinica, 2011, 60:098401)

[6] 孙莹,杨瑞霞,武一宾,等.GaAs/AlxGa1-xAs量子阱红外探测器光谱特性的研究[J].半导体技术, 2010, 35(3):264-268.(Sun Ying, Yang Ruixia, Wu Yibin, et al. Study on spectral characteristic of GaAs/AlxGa1-xAs QWIP. Journal of Semiconductor Technology, 2010, 35(3):264-268)

[7] Chen H B, Chen X S, Zeng Y, et al. The distribution of grating-coupled field of quantum well infrared photodetector using FDTD method[C]//Proc of SPIE. 2007:68351E.

[8] Xiong D Y, Li N, Xu W L, et al. A resonant tunneling structure integrated InGaAs/GaAs very-long-wavelength quantum-well infrared photodetector[J]. Chin Phys Lett, 2007, 24(11):3283-3285.

[9] Ribet-Mohamed I, Le Rouzo J, Rommeluere S, et al. Advanced characterization of the radiometric performances of quantum well infrared photodetectors[J]. Infrared Physics and Technology, 2005, 47(1/2):119-131.

[10] Li N, Xiong D Y, Yang X F, et al. Dark currents of GaAs/AlGaAs quantum-well infrared photodetectors[J]. Appl Phys A, 2007, 89(3):701-705.

胡小英, 刘卫国. GaAs/AlxGa1-xAs量子阱红外探测器微结构研究[J]. 强激光与粒子束, 2013, 25(6): 1405. Hu Xiaoying, Liu Weiguo. Microstructure studies of GaAs/AlxGa1-xAs quantum well infrared photodetector[J]. High Power Laser and Particle Beams, 2013, 25(6): 1405.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!