激光生物学报, 2020, 29 (1): 34, 网络出版: 2020-04-13  

非标记表面增强拉曼光谱在DNA检测中的应用

Application of Label-free Surface Enhanced Raman Spectroscopy in DNA Detection
作者单位
1 医学光电科学与技术教育部重点实验室, 福建省光子技术重点实验室, 福建师范大学光电与信息工程学院, 福州350007
2 福建省妇幼保健院, 福州 350001
引用该论文

吴琼, 林慧晶, 徐两蒲, 孙艳, 林多, 陈冠楠. 非标记表面增强拉曼光谱在DNA检测中的应用[J]. 激光生物学报, 2020, 29(1): 34.

WU Qiong, LIN Huijing, XU Liangpu, SUN Yan, LIN Duo, CHEN Guannan. Application of Label-free Surface Enhanced Raman Spectroscopy in DNA Detection[J]. Acta Laser Biology Sinica, 2020, 29(1): 34.

参考文献

[1] BARHOUMI A, ZHANG D, TAM F, et al. Surface-enhanced Raman spectroscopy of DNA[J]. Journal of the American Chemical Society, 2008, 130(16): 5523-5529.

[2] MCCLURE R F, EWALT M D, CROW J, et al. Clinical significance of DNA variants in chronic myeloid neoplasms: a report of the Association for Molecular Pathology[J]. The Journal of Molecular Diagnostics, 2018, 20(6): 717-737.

[3] TIAN S, NEUMANN O, MCCLAIN M J, et al. Aluminum nanocrystals: a sustainable substrate for quantitative SERS-based DNA detection[J]. Nano Letters, 2017, 17(8): 5071-5077.

[4] XU L J, LEI Z C, LI J, et al. Label-free surface-enhanced Raman spectroscopy detection of DNA with single-base sensitivity[J]. Journal of the American Chemical Society, 2015, 137(15): 5149-5154.

[5] NIEMEYER CHRISTOF M, BIOHM DIETMA R. DNA microarrays[J]. Angewandte Chemie International Edition, 1999, 38(19): 2865-2869.

[6] RAMAN C V, KRISHNAN K S. A new type of secondary radiation[J]. Nature, 1928, 121(3048): 501-502.

[7] DAS R S, AGRAWAL Y K. Raman spectroscopy: recent advancements, techniques and applications[J]. Vibrational Spectroscopy, 2011, 57(2): 163-176.

[8] DING H, DUPONT A W, SINGHAL S, et al. Effect of physiological factors on the biochemical properties of colon tissue-an in vivo Raman spectroscopy study[J]. Journal of Raman Spectroscopy, 2017, 48(7): 902-909.

[9] DRAGA R O P, GRIMBERGEN M C M, VIJVERBERG P L M, et al.In vivo bladder cancer diagnosis by high-volume Raman spectroscopy[J]. Analytical Chemistry, 2010, 82(14): 5993-5999.

[10] TEH S K, ZHENG W, LAU D P, et al. Spectroscopic diagnosis of laryngeal carcinoma using near-infrared Raman spectroscopy and random recursive partitioning ensemble techniques[J]. Analyst, 2009, 134(6): 1232-1239.

[11] WACHSMANN HOGIU S, WEEKS T, HUSER T. Chemical analysis in vivo and in vitro by Raman spectroscopy--from single cells to humans[J]. Current Opinion in Biotechnology, 2009, 20(1): 63-73.

[12] ZHANG C, WINNARD JR P T, DASARI S, et al. Label-free Raman spectroscopy provides early determination and precise localization of breast cancer-colonized bone alterations[J]. Chemical Science, 2018, 9(3): 743-753.

[13] DEVPURA S, THAKUR J S, SARKAR F H, et al. Detection of benign epithelia, prostatic intraepithelial neoplasia, and cancer regions in radical prostatectomy tissues using Raman spectroscopy[J]. Vibrational Spectroscopy, 2010, 53(2): 227-232.

[14] ERGHOLT M S, ZHENG W, LIN K, et al. Combining near-infrared-excited autofluorescence and Raman spectroscopy improves in vivo diagnosis of gastric cancer[J]. Biosensors and Bioelectronics, 2011, 26(10): 4104-4110.

[15] LIN K, CHENG D L P, HUANG Z. Optical diagnosis of laryngeal cancer using high wavenumber Raman spectroscopy[J]. Biosensors and Bioelectronics, 2012, 35(1): 213-217.

[16] BROZEK-PLUSKA B, MUSIAL J, KORDEK R, et al. Raman spectroscopy and imaging: applications in human breast cancer diagnosis[J]. Analyst, 2012, 137(16): 3773-3780.

[17] LUI H, ZHAO J, MCLEAN D, et al. Real-time Raman spectroscopy for in vivo skin cancer diagnosis[J]. Cancer Research, 2012, 72(10): 2491-2500.

[18] LADEMANN J, CASPERS P J, POL A V, et al. In vivo Raman spectroscopy detects increased epidermal antioxidative potential with topically applied carotenoids[J]. Laser Physics Letters, 2009, 6(1): 76-79.

[19] FLEISCHMANN M, HENDRA P J, MCQUILLAN A J. Raman spectra of pyridine adsorbed at a silver electrode[J]. Chemical Physics Letters, 1974, 26(2): 163-166.

[20] DING S Y, YOU E M, TIAN Z Q, et al. Electromagnetic theories of surface-enhanced Raman spectroscopy[J]. Chemical Society Reviews, 2017, 46(13): 4042-4076.

[21] GERSTEN J, NITZAN A. Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces[J]. Journal of Chemical Physics, 1980, 73(7): 3023-3037.

[22] FENG S Y, CHEN R, LIN J Q, et al. Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis[J]. Biosensors and Bioelectronics, 2010, 25(11): 2414-2419.

[23] KNEIPP K, MOSKOVITS M, KNEIPP H. Surface-enhanced Raman scattering[J]. Physics Today, 2007, 60(11): 40-46.

[24] LIN D, FENG S Y, PAN J J, et al. Colorectal cancer detection by gold nanoparticle based surface-enhanced Raman spectroscopy of blood serum and statistical analysis[J]. Optics Express, 2011, 19(14): 13565-13577.

[25] MACASKILL A, CRAWFORD D, GRAHAM D,et al. DNA sequence detection using surface-enhanced resonance raman spectroscopy in a homogeneous multiplexed assay[J]. Analytical Chemistry, 2009, 81(19): 8134-8140.

[26] HARPER M M, ROBERTSON B, RICKETTS A, et al. Specific detection of DNA through coupling of a TaqMan assay with surface enhanced Raman scattering(SERS)[J]. Chemical Communications, 2012, 48(75): 9412-9414.

[27] HAEPER M M, DOUGAN J A, SHAND N C, et al. Detection of SERS active labelled DNA based on surface affinity to silver nanoparticles[J]. Analyst, 2012, 137(9): 2063-2068.

[28] DONNELLY T, SMITH W E, FAULDS K, et al. Silver and magnetic nanoparticles for sensitive DNA detection by SERS[J]. Chemical Communications, 2014, 50(85): 12907-12910.

[29] JING S,WANG D F, NRBEL L, et al. Multicolor gold-silver nano-mushrooms as ready-to-use SERS probes for ultrasensitive and multiplex DNA/miRNA detection[J]. Analytical Chemistry, 2017, 89(4): 2531-2538.

[30] PALA L, MABBOTT S, FAUIDS K, et al. Introducing 12 new dyes for use with oligonucleotide functionalised silver nanoparticles for DNA detection with SERS[J]. RSC Advances, 2018, 8(32): 17685-17693.

[31] WEE J H, WANG Y L, CHANG-HAO H T S, et al. Simple, sensitive and accurate multiplex detection of clinically important melanoma DNA mutations in circulating tumour DNA with SERS nanotags[J]. Theranostics, 2016, 6(10): 1506-1513.

[32] LI X, YANG T, LI C S, et al. Surface enhanced raman spectroscopy (SERS) for the multiplex detection of braf, kras, and pik3ca mutations in plasma of colorectal cancer patients[J]. Theranostics, 2018, 8(6): 1678-1689.

[33] BELL S E, SIRIMUTHU N M. Surface-enhanced Raman spectroscopy (SERS) for sub-micromolar detection of DNA/RNA mononucleotides[J]. Journal of the American Chemical Society, 2006, 128(49): 15580-15581.

[34] BARHOUMI A, HALAS N J. Label-free detection of DNA hybridization using surface enhanced Raman spectroscopy[J]. Journal of the American Chemical Society, 2010, 132(37): 12792-12793.

[35] PAPADOPOULOU E, BELL S E. DNA reorientation on Au nanoparticles: label-free detection of hybridization by surface enhanced Raman spectroscopy[J]. Chemical Communications, 2011, 47(39): 10966-10968.

[36] MARKS H, GRAHAM D, COTE G L. SERS active colloidal nanoparticles for the detection of small blood biomarkers using aptamers[C]. Colloidal Nanoparticles for Biomedical Applications X, 2015, 93381.

[37] SUN Z, LIAO T, ZHANG Y, et al. Biomimetic nanochannels based biosensor for ultrasensitive and label-free detection of nucleic acids[J]. Biosensors and Bioelectronics, 2016, (86): 194-201.

[38] HAN B, ZHANG Y L, ZHU L, et al. Direct laser scribing of agnps@ rgo biochip as a reusable sers sensor for DNA detection[J]. Sensors and Actuators B: Chemical, 2018, (270): 500-507.

[39] LI Y, GAO T Y, XUG T, et al. Direct approach toward label-free DNA detection by surface-enhanced Raman spectroscopy: discrimination of a single-base mutation in 50 base-paired double helixes[J]. Analytical Chemistry, 2019, 91(13): 7980-7984.

[40] QIU S, LI C, LIN J, et al. Early discrimination of nasopharyngeal carcinoma based on tissue deoxyribose nucleic acid surface-enhanced Raman spectroscopy analysis[J]. Journal of Biomedical Optics, 2016, 21(12): 125003-125006.

[41] LU Y L, JIE Z, YAOG H, et al. A label-free SERS approach to quantitative and selective detection of mercury (II) based on DNA aptamer-modified SiO2@Au core/shell nanoparticles[J]. Sensors & Actuators B Chemical, 2018, (258): 365-372.

[42] LIN D, GONG T X, HONG Z Y, et al. Metal carbonyls for the biointerference-free ratiometric surface-enhanced Raman spectroscopy-based assay for cell-free circulating DNA of epstein-barr virus in blood[J]. Analytical Chemistry, 2018, 90(12): 7139-7147.

[43] LIN D, GONG T X, QIU S F, et al. Dual signal amplification nanosensor based on SERS technology for detection of tumor-related DNA[J]. Chemical Communications, 2018, 55(11): 1548-1551.

吴琼, 林慧晶, 徐两蒲, 孙艳, 林多, 陈冠楠. 非标记表面增强拉曼光谱在DNA检测中的应用[J]. 激光生物学报, 2020, 29(1): 34. WU Qiong, LIN Huijing, XU Liangpu, SUN Yan, LIN Duo, CHEN Guannan. Application of Label-free Surface Enhanced Raman Spectroscopy in DNA Detection[J]. Acta Laser Biology Sinica, 2020, 29(1): 34.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!