激光生物学报, 2020, 29 (1): 34, 网络出版: 2020-04-13  

非标记表面增强拉曼光谱在DNA检测中的应用

Application of Label-free Surface Enhanced Raman Spectroscopy in DNA Detection
作者单位
1 医学光电科学与技术教育部重点实验室, 福建省光子技术重点实验室, 福建师范大学光电与信息工程学院, 福州350007
2 福建省妇幼保健院, 福州 350001
摘要
表面增强拉曼光谱(SERS)是一种超灵敏的生化分析技术, 已经被广泛运用于细胞、核酸、蛋白质等生物分子的检测, 在生物医学领域表现出了巨大的应用潜力。近年来, 将表面增强拉曼光谱技术应用于遗传物质DNA的精准检测, 引起了人们广泛的关注。本文简要叙述了表面增强拉曼光谱技术的基本原理及其在DNA检测中的优势, 主要介绍了非标记的DNA-SERS检测应用进展, 其中包括本项目组的相关工作。研究表明, 非标记DNA-SERS技术有望成为一种快速、准确的临床诊断方式。
Abstract
Surface enhanced Raman scattering (SERS),an ultra-sensitive biochemical analytical technology, has been widely used for the detection of biomolecules, such as cell, nucleic acid, protein, showing great potential in the field of biomedical application.In recent years, the application of SERS in accurate detection for DNA has attracted extensive attentions. This review briefly introduces the basic principle of SERS and its advantages in DNA detection. It mainly introduces label-free DNA-SERS detection, including the related work of our group. Studies have shown that label-free DNA-SERS technology is expected to become a fast and accurate clinical diagnosis approach.
参考文献

[1] BARHOUMI A, ZHANG D, TAM F, et al. Surface-enhanced Raman spectroscopy of DNA[J]. Journal of the American Chemical Society, 2008, 130(16): 5523-5529.

[2] MCCLURE R F, EWALT M D, CROW J, et al. Clinical significance of DNA variants in chronic myeloid neoplasms: a report of the Association for Molecular Pathology[J]. The Journal of Molecular Diagnostics, 2018, 20(6): 717-737.

[3] TIAN S, NEUMANN O, MCCLAIN M J, et al. Aluminum nanocrystals: a sustainable substrate for quantitative SERS-based DNA detection[J]. Nano Letters, 2017, 17(8): 5071-5077.

[4] XU L J, LEI Z C, LI J, et al. Label-free surface-enhanced Raman spectroscopy detection of DNA with single-base sensitivity[J]. Journal of the American Chemical Society, 2015, 137(15): 5149-5154.

[5] NIEMEYER CHRISTOF M, BIOHM DIETMA R. DNA microarrays[J]. Angewandte Chemie International Edition, 1999, 38(19): 2865-2869.

[6] RAMAN C V, KRISHNAN K S. A new type of secondary radiation[J]. Nature, 1928, 121(3048): 501-502.

[7] DAS R S, AGRAWAL Y K. Raman spectroscopy: recent advancements, techniques and applications[J]. Vibrational Spectroscopy, 2011, 57(2): 163-176.

[8] DING H, DUPONT A W, SINGHAL S, et al. Effect of physiological factors on the biochemical properties of colon tissue-an in vivo Raman spectroscopy study[J]. Journal of Raman Spectroscopy, 2017, 48(7): 902-909.

[9] DRAGA R O P, GRIMBERGEN M C M, VIJVERBERG P L M, et al.In vivo bladder cancer diagnosis by high-volume Raman spectroscopy[J]. Analytical Chemistry, 2010, 82(14): 5993-5999.

[10] TEH S K, ZHENG W, LAU D P, et al. Spectroscopic diagnosis of laryngeal carcinoma using near-infrared Raman spectroscopy and random recursive partitioning ensemble techniques[J]. Analyst, 2009, 134(6): 1232-1239.

[11] WACHSMANN HOGIU S, WEEKS T, HUSER T. Chemical analysis in vivo and in vitro by Raman spectroscopy--from single cells to humans[J]. Current Opinion in Biotechnology, 2009, 20(1): 63-73.

[12] ZHANG C, WINNARD JR P T, DASARI S, et al. Label-free Raman spectroscopy provides early determination and precise localization of breast cancer-colonized bone alterations[J]. Chemical Science, 2018, 9(3): 743-753.

[13] DEVPURA S, THAKUR J S, SARKAR F H, et al. Detection of benign epithelia, prostatic intraepithelial neoplasia, and cancer regions in radical prostatectomy tissues using Raman spectroscopy[J]. Vibrational Spectroscopy, 2010, 53(2): 227-232.

[14] ERGHOLT M S, ZHENG W, LIN K, et al. Combining near-infrared-excited autofluorescence and Raman spectroscopy improves in vivo diagnosis of gastric cancer[J]. Biosensors and Bioelectronics, 2011, 26(10): 4104-4110.

[15] LIN K, CHENG D L P, HUANG Z. Optical diagnosis of laryngeal cancer using high wavenumber Raman spectroscopy[J]. Biosensors and Bioelectronics, 2012, 35(1): 213-217.

[16] BROZEK-PLUSKA B, MUSIAL J, KORDEK R, et al. Raman spectroscopy and imaging: applications in human breast cancer diagnosis[J]. Analyst, 2012, 137(16): 3773-3780.

[17] LUI H, ZHAO J, MCLEAN D, et al. Real-time Raman spectroscopy for in vivo skin cancer diagnosis[J]. Cancer Research, 2012, 72(10): 2491-2500.

[18] LADEMANN J, CASPERS P J, POL A V, et al. In vivo Raman spectroscopy detects increased epidermal antioxidative potential with topically applied carotenoids[J]. Laser Physics Letters, 2009, 6(1): 76-79.

[19] FLEISCHMANN M, HENDRA P J, MCQUILLAN A J. Raman spectra of pyridine adsorbed at a silver electrode[J]. Chemical Physics Letters, 1974, 26(2): 163-166.

[20] DING S Y, YOU E M, TIAN Z Q, et al. Electromagnetic theories of surface-enhanced Raman spectroscopy[J]. Chemical Society Reviews, 2017, 46(13): 4042-4076.

[21] GERSTEN J, NITZAN A. Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces[J]. Journal of Chemical Physics, 1980, 73(7): 3023-3037.

[22] FENG S Y, CHEN R, LIN J Q, et al. Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis[J]. Biosensors and Bioelectronics, 2010, 25(11): 2414-2419.

[23] KNEIPP K, MOSKOVITS M, KNEIPP H. Surface-enhanced Raman scattering[J]. Physics Today, 2007, 60(11): 40-46.

[24] LIN D, FENG S Y, PAN J J, et al. Colorectal cancer detection by gold nanoparticle based surface-enhanced Raman spectroscopy of blood serum and statistical analysis[J]. Optics Express, 2011, 19(14): 13565-13577.

[25] MACASKILL A, CRAWFORD D, GRAHAM D,et al. DNA sequence detection using surface-enhanced resonance raman spectroscopy in a homogeneous multiplexed assay[J]. Analytical Chemistry, 2009, 81(19): 8134-8140.

[26] HARPER M M, ROBERTSON B, RICKETTS A, et al. Specific detection of DNA through coupling of a TaqMan assay with surface enhanced Raman scattering(SERS)[J]. Chemical Communications, 2012, 48(75): 9412-9414.

[27] HAEPER M M, DOUGAN J A, SHAND N C, et al. Detection of SERS active labelled DNA based on surface affinity to silver nanoparticles[J]. Analyst, 2012, 137(9): 2063-2068.

[28] DONNELLY T, SMITH W E, FAULDS K, et al. Silver and magnetic nanoparticles for sensitive DNA detection by SERS[J]. Chemical Communications, 2014, 50(85): 12907-12910.

[29] JING S,WANG D F, NRBEL L, et al. Multicolor gold-silver nano-mushrooms as ready-to-use SERS probes for ultrasensitive and multiplex DNA/miRNA detection[J]. Analytical Chemistry, 2017, 89(4): 2531-2538.

[30] PALA L, MABBOTT S, FAUIDS K, et al. Introducing 12 new dyes for use with oligonucleotide functionalised silver nanoparticles for DNA detection with SERS[J]. RSC Advances, 2018, 8(32): 17685-17693.

[31] WEE J H, WANG Y L, CHANG-HAO H T S, et al. Simple, sensitive and accurate multiplex detection of clinically important melanoma DNA mutations in circulating tumour DNA with SERS nanotags[J]. Theranostics, 2016, 6(10): 1506-1513.

[32] LI X, YANG T, LI C S, et al. Surface enhanced raman spectroscopy (SERS) for the multiplex detection of braf, kras, and pik3ca mutations in plasma of colorectal cancer patients[J]. Theranostics, 2018, 8(6): 1678-1689.

[33] BELL S E, SIRIMUTHU N M. Surface-enhanced Raman spectroscopy (SERS) for sub-micromolar detection of DNA/RNA mononucleotides[J]. Journal of the American Chemical Society, 2006, 128(49): 15580-15581.

[34] BARHOUMI A, HALAS N J. Label-free detection of DNA hybridization using surface enhanced Raman spectroscopy[J]. Journal of the American Chemical Society, 2010, 132(37): 12792-12793.

[35] PAPADOPOULOU E, BELL S E. DNA reorientation on Au nanoparticles: label-free detection of hybridization by surface enhanced Raman spectroscopy[J]. Chemical Communications, 2011, 47(39): 10966-10968.

[36] MARKS H, GRAHAM D, COTE G L. SERS active colloidal nanoparticles for the detection of small blood biomarkers using aptamers[C]. Colloidal Nanoparticles for Biomedical Applications X, 2015, 93381.

[37] SUN Z, LIAO T, ZHANG Y, et al. Biomimetic nanochannels based biosensor for ultrasensitive and label-free detection of nucleic acids[J]. Biosensors and Bioelectronics, 2016, (86): 194-201.

[38] HAN B, ZHANG Y L, ZHU L, et al. Direct laser scribing of agnps@ rgo biochip as a reusable sers sensor for DNA detection[J]. Sensors and Actuators B: Chemical, 2018, (270): 500-507.

[39] LI Y, GAO T Y, XUG T, et al. Direct approach toward label-free DNA detection by surface-enhanced Raman spectroscopy: discrimination of a single-base mutation in 50 base-paired double helixes[J]. Analytical Chemistry, 2019, 91(13): 7980-7984.

[40] QIU S, LI C, LIN J, et al. Early discrimination of nasopharyngeal carcinoma based on tissue deoxyribose nucleic acid surface-enhanced Raman spectroscopy analysis[J]. Journal of Biomedical Optics, 2016, 21(12): 125003-125006.

[41] LU Y L, JIE Z, YAOG H, et al. A label-free SERS approach to quantitative and selective detection of mercury (II) based on DNA aptamer-modified SiO2@Au core/shell nanoparticles[J]. Sensors & Actuators B Chemical, 2018, (258): 365-372.

[42] LIN D, GONG T X, HONG Z Y, et al. Metal carbonyls for the biointerference-free ratiometric surface-enhanced Raman spectroscopy-based assay for cell-free circulating DNA of epstein-barr virus in blood[J]. Analytical Chemistry, 2018, 90(12): 7139-7147.

[43] LIN D, GONG T X, QIU S F, et al. Dual signal amplification nanosensor based on SERS technology for detection of tumor-related DNA[J]. Chemical Communications, 2018, 55(11): 1548-1551.

吴琼, 林慧晶, 徐两蒲, 孙艳, 林多, 陈冠楠. 非标记表面增强拉曼光谱在DNA检测中的应用[J]. 激光生物学报, 2020, 29(1): 34. WU Qiong, LIN Huijing, XU Liangpu, SUN Yan, LIN Duo, CHEN Guannan. Application of Label-free Surface Enhanced Raman Spectroscopy in DNA Detection[J]. Acta Laser Biology Sinica, 2020, 29(1): 34.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!