Author Affiliations
Abstract
1 Institute of Biochemistry and Physiology of Plants and Microorganisms Russian Academy of Sciences, Saratov 410049, Russia
2 Razumovsky Saratov State Medical University, Saratov 410012, Russia
3 Federal Center of Agriculture Research of the South-East Region, Saratov 410010, Russia
4 Saratov National Research State University Saratov 410012, Russia
Promising biomedical applications of hybrid materials composed of gold nanoparticles and nucleic acids have attracted strong interest from the nanobiotechnological community. The particular interest is owing to the robust and easy-to-make synthetic approaches, to the versatile optical and catalytic properties of gold nanoparticles combined with the molecular recognition and programmable properties of nucleic acids. The significant progress is made in the development of DNA–gold nanostructures and their applications, such as molecular recognition, cell and tissue bioimaging, targeted delivery of therapeutic agents, etc. This review is focused on the critical discussion of the recent applications of the gold nanoparticles–nucleic acids hybrids. The effect of particle size, surface, charge and thermal properties on the interactions with functional nucleic acids is discussed. For each of the above topics, the basic principles, recent advances, and current challenges are discussed. Emphasis is placed on the systematization of data over the theranostic systems on the basis of the gold nanoparticles–nucleic acids hybrids. Specifically, we start our discussion with observation of the recent data on interaction of various gold nanoparticles with nucleic acids. Further we describe existing gene delivery systems, nucleic acids detection, and bioimaging technologies. Finally, we describe the phenomenon of the polymerase chain reaction improvement by gold nanoparticle additives and its potential underlying mechanisms. Lastly, we provide a short summary of reported data and outline the challenges and perspectives.
Gold nanoparticles delivery DNA detection bioimaging 
Journal of Innovative Optical Health Sciences
2021, 14(4): 2130003
作者单位
摘要
1 医学光电科学与技术教育部重点实验室, 福建省光子技术重点实验室, 福建师范大学光电与信息工程学院, 福州350007
2 福建省妇幼保健院, 福州 350001
表面增强拉曼光谱(SERS)是一种超灵敏的生化分析技术, 已经被广泛运用于细胞、核酸、蛋白质等生物分子的检测, 在生物医学领域表现出了巨大的应用潜力。近年来, 将表面增强拉曼光谱技术应用于遗传物质DNA的精准检测, 引起了人们广泛的关注。本文简要叙述了表面增强拉曼光谱技术的基本原理及其在DNA检测中的优势, 主要介绍了非标记的DNA-SERS检测应用进展, 其中包括本项目组的相关工作。研究表明, 非标记DNA-SERS技术有望成为一种快速、准确的临床诊断方式。
表面增强拉曼光谱 非标记 DNA检测 进展 SERS label-free DNA detection advances 
激光生物学报
2020, 29(1): 34
作者单位
摘要
四川大学生命科学学院教育部生物资源与环境重点实验室, 四川 成都610064
Southern杂交作为黄金标准, 已广泛运用于DNA的检测上。 但是, 经典的southern杂交和近年来一些DNA检测方法存在放射性污染, 操作繁琐, 耗时, 对实验仪器设备要求高等问题。 本文利用异硫氰酸荧光素(FITC)标记的dUTP合成DNA探针建立了快速检测DNA的液相杂交方法。 该方法包括探针制备、 液相杂交、 电泳分离和信号检测四个步骤, 并在此基础上对FITC-双链和FITC-单链探针的杂交效果作了比较。 结果显示, 使用FITC标记的两种探针都能取得良好的实验结果, 但单链探针较双链的检测灵敏度高; 双链DNA探针可以检测出0.8 μg(3.64×10-13 mol)的质粒, 而单链DNA探针可以检测出0.38 μg(1.82×10-13 mol)的质粒DNA, 在检出效率上是前者的2.1倍。 整个检测过程操作简便, 可在3 h内完成, 可较好地解决了其他DNA检测方法存在的费时费力的问题。
液相杂交 southern杂交 DNA检测 荧光 Liquid hybridization FITC-12-dUTP FITC-12-dUTP Southern blot Specific DNA detection 
光谱学与光谱分析
2014, 34(6): 1577

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!