光学 精密工程, 2018, 26 (2): 410, 网络出版: 2018-03-21   

车载光电侦察平台视轴稳定技术研究

Study on boresight stabilized technology of vehicle photoelectric reconnaissance platform
作者单位
1 长春理工大学 光电工程学院,吉林 长春 130022
2 长春汽车工业高等专科学校 汽车运用学院,吉林 长春 130013
3 中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
摘要
为了进一步提高光电平台伺服控制系统的抗扰动能力,提出一种基于自抗扰控制器的改进型速度稳定回路。首先,分析了平台视轴稳定回路的数学模型并引入电流环对其进行了化简,通过伺服控制系统中扰动作用原理,引入扰动总和的思想。然后,设计含有降阶扩张状态观测器的自抗扰控制器,对扰动总和实时观测并进行线性化前馈补偿。最后,以某型车载光电平台为控制对象,进行了PI控制器与自抗扰控制器的对比实验。实验结果表明,采用自抗扰控制器伺服控制系统相比PI控制法的阶跃响应速度更快,超调幅值仅为PI控制法的26.98%。使用摇摆台引入的频率为2.5 Hz的正弦扰动,系统稳态误差幅值仅为PI控制法的9.76%。在系统模型参数改变±15%范围内,自抗扰控制器仍具有良好的抗扰能力,表现出很强的鲁棒性,满足光电平台的性能要求,对提升平台抗扰能力有着较高的实用性。
Abstract
In order to improve the ability of anti-disturbance of the servo control system for photoelectric platform, an improved velocity loop based on ADRC method was presented. Firstly, the analyses of boresight stability loop of the photoelectric platform were conducted to simplified its mathematical model. Then the general disturbance was introduced by analyzing the disturbance mechanism in servo control system. Secondly, a new controller based on a reduced-order ESO was designed, and was applied to the improved velocity loop, which took real-time observation on the general disturbance and compensated the disturbance linearly. Finally, a contrastive experiment was conducted between PI controller and ADRC controller by using a vehicle-borne photoelectric platform as control object. The experimental results showed that the speed of step signal response of ADRC controller was faster than that of PI controller. The overshoot amplitude was only 26.98% of that in PI controller. When the frequency of 2.5 Hz sinusoidal disturbance was used by swing table, the system steady-state error amplitude was only 9.76% of that in PI controller. Within the scope of the system model parameters changed plus or minus by 15%, the ADRC controller still achieved excellent anti-disturbance capacity, which showed strong robustness and met the performance requirements for vehicle photoelectric platform. It is very practical in improving the capacity of disturbance resistance for photoelectric platform.
参考文献

[1] 陆培国, 寿少峻. 舰载光电系统高精度跟踪控制技术[J]. 应用光学, 2006, 27(6): 476-484.

    LU P G, SHOU SH J. High accuracy tracking technology and its application in ship-borne electro-optical system[J]. Journal of Applied Optics, 2006, 27(6): 476-484. (in Chinese)

[2] 刘晶红, 朱志强, 沈宏海, 等. 加速度在控制系统扰动补偿中的应用[J]. 光学 精密工程, 2009, 17(9): 2191-2198.

    LIU J H, ZHU ZH Q, SHEN H H, et al.. Application of control system based on acceleration to disturbance compensation[J]. Opt. Precision Eng., 2009, 17(9): 2191-2198. (in Chinese)

[3] 邓永停, 李洪文, 王建立, 等. 基于自适应滑模控制的大型望远镜低速控制[J]. 中国光学, 2016, 9(6): 713-720.

    DENG Y T, LI H W, WANG J L, et al.. Large telescope low speed control based on adaptive sliding mode control[J]. Chinese Optics, 2016, 9(6):713-720. (in Chinese)

[4] 杨丹迪, 王晓玢, 胡发兴, 等. 光电稳定平台的抗扰问题研究[C]. 第30届中国控制会议, 中国自动化学会控制理论专业委员会, 2011: 22-24.

    YANG D D, WANG X B, HU F X, et al.. On disturbance rejection on a photoelectrical stabilized platform[C]. Proceedings of the 30th Chinese Control Conference, Technical Committee on Control Theory, Chinese Association of Automation, 2011:22-24. (in Chinese)

[5] 李嘉全, 丁策, 孔德杰, 等. 基于速度信号的扰动观测器及在光电稳定平台的应用[J]. 光学 精密工程, 2011, 19(5): 998-1004.

    LI J Q, DING C, KONG D J, et al.. Velocity based disturbance observer and its application to photoelectric stabilized platform[J]. Opt. Precision Eng., 2011, 19(5): 998-1004. (in Chinese)

[6] 韩京清. 自抗扰控制技术——估计补偿不确定因素的控制技术[M]. 北京: 国防工业出版社, 2008: 183-287.

    HAN J Q. Active Disturbance Rejection Control Technique-the Technique for Estimating and Compensating the Uncertainties[M]. Beijing: National Defense Industry Press, 2008: 183-287. (in Chinese)

[7] 陈增强, 孙明玮, 杨瑞光. 线性自抗扰控制器的稳定性研究[J]. 自动化学报, 2013, 39(5): 574-580.

    CHEN Z Q, SUN M W, YANG R G. On the stability of linear active disturbance rejection control[J]. Acta Automatica Sinica, 2013, 39(5): 574-580. (in Chinese)

[8] 陈茂胜, 金光, 张涛, 等. 积分反馈自抗扰控制力矩陀螺框架伺服系统设计[J]. 光学 精密工程, 2012, 20(11): 2424-2432.

    CHEN M SH, JIN G, ZHANG T, et al.. Design of gimbal servo system of CMG using active disturbance rejection control with integral feedback[J]. Opt. Precision Eng., 2012, 20(11): 2424-2432. (in Chinese)

[9] 魏伟, 戴明, 李嘉全, 等. 航空光电稳定平台的自抗扰控制系统[J]. 光学 精密工程, 2015, 23(8): 2296-2305.

    WEI W, DAI M, LI J Q, et al.. ADRC control system for airborne opto-electronic platform[J]. Opt. Precision Eng., 2015, 23(8): 2296-2305. (in Chinese)

[10] 姬伟. 陀螺稳定光电跟踪平台伺服控制系统研究[D]. 南京: 东南大学, 2006.

    JI W. Research on servo control system of gyro stabilized and opto-electronic tracking platform[D]. Nanjing: Southeast University, 2006. (in Chinese)

[11] 李贤涛, 张葆, 沈宏海. 基于自抗扰控制技术提高航空光电稳定平台的扰动隔离度[J]. 光学 精密工程 2014, 22(8): 2223-2231.

    LI X T, ZHANG B, SHEN H H. Improvement of isolation degree of aerial photoelectrical stabilized platform based on ADRC[J]. Opt. Precision Eng., 2014, 22(8): 2223-2231. (in Chinese)

[12] 韩京清. 自抗扰控制器及其应用[J]. 控制与决策, 1998, 13(1): 19-23.

    HAN J Q. Auto-disturbances-rejection controller and its applications[J]. Control and Decision, 1998, 13(1):19-23. (in Chinese)

[13] GAO ZH Q. Scaling and bandwidth-parameterization based controller tuning[C]. Proceedings of 2003 American Control Conference, IEEE, 2003: 4989-4996.

方宇超, 李梦雪, 车英, 盖竹秋. 车载光电侦察平台视轴稳定技术研究[J]. 光学 精密工程, 2018, 26(2): 410. FANG Yu-chao, LI Meng-xue, CHE Ying, GE Zhu-qiu. Study on boresight stabilized technology of vehicle photoelectric reconnaissance platform[J]. Optics and Precision Engineering, 2018, 26(2): 410.

本文已被 8 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!