中国激光, 2012, 39 (s2): s206002, 网络出版: 2012-12-31  

分相温度对Eu2+/Dy3+共掺高硅氧玻璃发光性质的影响

Effect of Phase Separation Temperature on Photoluminescence Properties of Eu2+/Dy3+ Co-Doped High Silica Glasses
作者单位
重庆大学光电工程学院光电技术与系统教育部重点实验室, 重庆 400044
摘要
高硅氧发光玻璃是一种极具研究潜力的新型发光材料,制备过程中其分相温度是影响最终光致发光性质的重要因素。在不同分相温度下制备了多孔玻璃,并在相同吸附条件下制备了Eu2+/Dy3+共掺的高硅氧发光玻璃,测试了各多孔玻璃的比表面积参数和相应高硅氧发光玻璃的发射光谱。多孔玻璃比表面积参数测试结果表明,随着分相温度升高,多孔玻璃的比表面积先减小后增大。发射光谱测试结果表明,随着分相温度升高,烧结制备的高硅氧发光玻璃的发射特征峰峰值位置相同,发光强度先减小后增大。其中分相温度为620 ℃的多孔玻璃具有最大的比表面积,所制备的高硅氧发光玻璃具有最大的发光强度。
Abstract
High silica glass is a potential luminescence material in the future, whose photoluminescence properties are seriously influenced by phase separation temperature in the procedure. Porous glass with different phase separation temperatures and Eu2+/Dy3+ co-doped high silica luminescence glass with the same adsorption conditions are prepared. The specific surface area parameters of porous glass and the emission spectra of corresponding high silica luminescence glass are measured. The specific surface area measurement results indicate that the specific surface area of porous glass decrease firstly and then increase when the phase separation temperature is rising. The emission spectra of high silica luminescence glass indicate that the positions of characteristic peaks of high silica luminescence glass remain unchanged, while the emission intensity decreases firstly and then increases when the phase separation temperature is rising. Porous glass with phase separation temperature 620 ℃ has relative maximal specific surface area and corresponding high silica luminescence glass has the maximal emission intensity.
参考文献

[1] D. Chen, H. Miyoshi, T. Akai et al.. Colorless transparent fluorescence material: sintered porous glass containing rare-earth and transition-metal ions[J]. Appl. Phys. Lett., 2005, 86(23): 2319081

[2] 乔延波, 达宁, 陈丹平 等. 钕离子掺杂和钕铝共掺高硅氧玻璃的光谱性质研究[J]. 物理学报, 2007, 56(12): 7023~7028

    Qiao Yanbo, Da Ning, Chen Danping et al.. Spectroscopic properties of Nd-doped and Nd-Al-codoped high silica glasses[J]. Acta Physica Sinica, 2007, 56(12): 7023~7028

[3] 达宁, 杨旅云, 彭明营 等. 掺铒高硅氧玻璃光谱性质的研究[J]. 物理学报, 2006, 55(6): 2771~2776

    Da Ning, Yang Lüyun, Peng Mingying et al.. Spectroscopic properties of Er3+ doped high silica glasses[J]. Acta Physica Sinica, 2006, 55(6): 2771~2776

[4] Qiang Zhang, Yanbo Qiao, Bin Qian et al.. Luminescence properties of the Eu-doped porous glass and spontaneous reduction of Eu3+ to Eu2+[J]. Journal of Luminescence, 2009, 129(11): 1393~1397

[5] L. Yang, M. Yamashita, T. Akai. Green and red high-silica luminous glass suitable for near-ultraviolet excitation[J]. Opt. Express, 2009, 17(8): 6688~6695

[6] W. Liu, D. Chen, H. Miyoshi et al.. Tb3+-impregnated, non-porous silica glass possessing intense green luminescence under UV and VUV excitation[J]. Journal of Non-Crystalline Solids, 2006, 352(28): 2969~2976

[7] L. Jin, W. Chen, X. Lei et al.. Luminescence properties of Eu2+/Dy3+ co-doped high silica glass for white LED[C]. SPIE, 2011, 8202: 820204

[8] 陈丹平. 高硅氧发光玻璃的制备及其荧光性能[J]. 硅酸盐学报, 2007, 35(S1): 74~81

    Chen Danping. Prepation and fluorescence properties of high silica luminescent glasses[J]. Journal of the Chinese Ceramic Society, 2007, 35(S1): 74~81

[9] Harrison Porter Hood, Martin Emery Nordberg, Treated Borosilicate Glass[P]. US Patent 2,106,744, 1938

[10] 谢康, 赵修建, 周永恒 等. Co/Ce共掺杂高硅氧玻璃的制备和光谱性能[J]. 硅酸盐学报, 2001, 29(5): 496~499

    Xie Kang, Zhao Xiujian, Zhou Yongheng et al.. Study of preparation and spectral properties of the Co/Ce co-doped high silica glasses[J]. Journal of the Chinese Ceramic Society, 2001, 29(5): 496~499

[11] 廉志红, 李成宇, 吴昊 等. Dy3+离子在硼磷酸锌玻璃中的发光性质[J]. 中国稀土学报, 2008, 26(5): 542~546

    Lian Zhihong, Li Chengyu, Wu Hao et al.. Luminescence properties of Dy3+ in ZnO-B2O3-P2O5 glasses[J]. Journal of the Chinese Rare Earth Society, 2008, 26(5): 542~546

[12] T. Yu, J. Sun, R. Hua et al.. Luminescence of complex ion WO18-12 in Dy3+ doped nanocrystal Gd6WO12 phosphor[J]. Journal of Alloys and Compounds, 2011, 509(2): 391~395

[13] M. F. Hazenkamp, G. Blasse. Rare-earth ions adsorbed onto porous glass-luminescence as a characterizing tool[J]. Chemistry of Materials, 1990, 2(2): 105~110

[14] 盛国栋, 杨世通, 赵东林 等. 静态法和EXAFS技术研究Eu(III)在钛酸纳米管上的吸附行为和微观机制[J]. 中国科学: 化学, 2012, 42(1): 60~73

    Sheng Guodong, Yang Shitong, Zhao Donglin et al.. Adsorption of Eu(III) on titanate nanotubes studied by a combination of batch and EXAFS technique[J]. Scientia Sinica Chimica, 2012, 42(1): 60~73

[15] M. Takeuchi, G. Martra, S. Coluccia et al.. Investigations of the structure of H2O clusters adsorbed on TiO2 surfaces by near-infrared absorption spectroscopy[J]. J. Phys. Chem. B, 2005, 109(15): 7387~7391

[16] 赵振国. 吸附作用应用原理[M]. 北京: 化学工业出版社, 2005

    Zhao Zhenguo. Application and Mechanism of Adsorption[M]. Beijing: Chemical Industry Press, 2005

金雷, 雷小华, 杜晓晴, 任林娇, 陈伟民. 分相温度对Eu2+/Dy3+共掺高硅氧玻璃发光性质的影响[J]. 中国激光, 2012, 39(s2): s206002. Jin Lei, Lei Xiaohua, Du Xiaoqing, Ren Linjiao, Chen Weimin. Effect of Phase Separation Temperature on Photoluminescence Properties of Eu2+/Dy3+ Co-Doped High Silica Glasses[J]. Chinese Journal of Lasers, 2012, 39(s2): s206002.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!