光学学报, 2006, 26 (4): 536, 网络出版: 2006-05-17   

铟封前后透射式GaAs光电阴极光谱响应特性的测试与分析

Measurement and Analysis of Spectral Response Characteristic of Transmission-Mode GaAs Photocathode before and after Indium Seal
作者单位
1 重庆大学光电工程学院, 重庆 400044
2 南京理工大学电子工程与光电技术学院, 南京 210094
摘要
利用自行研制的光谱响应测试仪工程化样机,对透射式GaAs光电阴极在高温激活结束、低温激活结束以及铟封成管后的光谱响应特性进行了测试。结果显示,铟封后阴极整个响应波段的光谱响应下降,长波响应受到最显著的影响,表现为800~815 nm之间长波响应大幅度衰减,截止波长和峰值波长向短波移动,峰值响应和积分灵敏度减小,最终的光谱响应曲线变得平坦。阴极参量的计算结果反映铟封后阴极的表面逸出几率降低,说明铟封引起阴极表面激活层发生变化,使得能量较低的长波段光生电子不容易逸出,阴极长波响应和灵敏度随之降低。进一步分析了铟封过程中影响阴极表面激活层的因素。
Abstract
Spectral response characteristics of transmission-mode GaAs photocathode after high-temperature activation, low-temperature activation and indium sealed into intensifier are measured by use of the home-made prototype of spectral response measurement instrument. The results show that spectral response curve in the whole response waveband decreases after indium seal, and long-wave responsibility is most obviously influenced. The long-wave response 800~815 nm decreases largely, cut-off wavelength and peak value wavelength move towards short-wave, peak response value and integral sensitivity decrease, and the final spectral response curve becomes flat. The calculation results of photocathode parameters reflect that surface escape probability decreases after indium seal, which indicates that indium seal leads to the variations of surface activation layers of photocathode, low-energy photoelectrons under long-wave are difficult to escape, and the long-wave response and sensitivity decrease accordingly. The influencing factors on the surface activation layers during indium seal are also analyzed.
参考文献

[1] Xu Jiangtao. The research of transmissive GaAs photocathode active technique[J]. Applied Optics, 2000, 21(4): 5~7 (in Chinese)
徐江涛. 透射式GaAs光电阴极激活技术研究[J]. 应用光学, 2000, 21(4): 5~7

[2] Chang Benkang, Xu Denggao, Qian Yunsheng et al.. Peak value position shifting of spectral response multialkali photocathodes[J]. Acta Optica Sinica, 1998, 18(2): 233~237 (in Chinese)
常本康,徐登高,钱芸生 等. 多碱光电阴极光谱响应峰值位置移动技术研究[J]. 光学学报, 1998, 18(2): 233~237

[3] Zong Zhiyuan, Chang Benkang. Calculation the quantum yield of NEA photocathode by integral[J]. Acta Optica Sinica, 1999, 19(9): 1177~1181 (in Chinese)
宗志园,常本康. 用积分法推导NEA光电阴极的量子产额[J]. 光学学报, 1999, 19(9): 1177~1181

[4] Li Wei, Zong Zhiyuan, Chang Benkang. Spectral matching factors of S25 photocathodes for reflection spectrum of objects Ⅰ. Dark green paint and green vegetation[J]. Acta Optica Sinica, 2000, 20(2): 279~282 (in Chinese)
李蔚,宗志园,常本康. S25光电阴极与景物反射光谱的光谱匹配系数I.暗绿色涂层和绿色草木[J]. 光学学报, 2000, 20(2): 279~282

[5] . J. Stocker. AES and LEED study of the activation of GaAs-Cs-O negative electron affinity surfaces[J]. Surface Science, 1975, 47: 501-513.

[6] Liu Yuanzheng, Wang Zhongchun, Dong Yaqiang. Electron Emission and Photocathode[M]. Beijing: Beijing University of Science and Technology Press, 1995 (in Chinese)
刘元震,王仲春,董亚强. 电子发射与光电阴极[M]. 北京: 北京理工大学出版社, 1995

[7] . A study on computer simulation of S25 series photocathodes spectral responses[J]. J. Nanjing University of Science and Technology, 1998, 22(3): 228-231.

[8] . C. Rodway, M. B. Allenson. In situ surface study of the activating layer on GaAs(Cs,O) photocathodes[J]. J. Phys. D: Appl. Phys., 1986, 19: 1353-1371.

[9] . Optimum (Cs,O)/GaAs interface of negative-electron-affinity GaAs photocathodes[J]. J. Appl. Phys., 1990, 68(2): 634-637.

[10] . Quantitative study on (Cs,O)/GaAs under annealing by angular dependent XPS[J]. Vacuum and Cryogenics, 2001, 7(1): 58-62.

[11] . Analysis of stability of imaging intensifiers[J]. Cloud and Light Technology, 1999, 31(2): 43-48.

[12] Xu Jiangtao. Effect of residual gas on emission property of gallium arsenide cathode in vacuum[J]. Applied Optics, 2003, 24(2): 13~15 (in Chinese)
徐江涛. 真空残气对GaAs阴极发射性能的影响[J]. 应用光学, 2003, 24(2): 13~15

[13] . H. Sommer. Stability of photocathode[J]. Appl. Opt., 1973, 12(1): 90-92.

[14] . M. Yee, D. A. Jackson. Photoyeild decay characteristics of a cesiated GaAs[J]. Solid-State Electronics, 1972, 15: 245-247.

[15] . Y. Su, W. E. Spicer, I. Lindau. Photoelectron spectroscopic determination of the structure of (Cs,O) activated GaAs (110) surface[J]. J. Appl. Phys., 1983, 54(3): 1413-1422.

[16] Zong Zhiyuan, Fu Rongguo, Qian Yunsheng. Calculation of electron surface escape probability of GaAs∶Cs-O NEA photocathodes[J]. Infrared Technology, 2002, 24(3): 27~30 (in Chinese)
宗志园,富容国,钱芸生 等. GaAs∶Cs,O NEA光电阴极电子表面逸出几率的计算[J]. 红外技术, 2002, 24(3): 27~30

[17] Yang Bangchao, Wang Wensheng. Physics and Technology of Thin Films[M]. Chengdu: University of Electronic Science and Technology Press, 1994 (in Chinese)
杨邦朝,王文生. 薄膜物理与技术[M]. 成都: 电子科技大学出版社,1994

杜晓晴, 常本康, 钱芸生, 邹继军. 铟封前后透射式GaAs光电阴极光谱响应特性的测试与分析[J]. 光学学报, 2006, 26(4): 536. 杜晓晴, 常本康, 钱芸生, 邹继军. Measurement and Analysis of Spectral Response Characteristic of Transmission-Mode GaAs Photocathode before and after Indium Seal[J]. Acta Optica Sinica, 2006, 26(4): 536.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!