光学 精密工程, 2019, 27 (1): 191, 网络出版: 2019-04-06   

面向深空探测Bayer图像的高效编码

Efficient coding method for deep space detection Bayer pattern image
作者单位
西安电子科技大学 综合业务网理论及关键技术国家重点实验室, 陕西 西安 710071
摘要
本文提出一种基于JPEG2000标准的Bayer图像高性能RBCR(Remove Bayer Component Relation, RBCR)压缩算法。在RBCR压缩算法中, 根据Bayer图像相关性较高的特点, 对Bayer图像进行颜色分量分离, 得到处理单元子图, 对各子图进行1×4整型离散余弦变换, 降低Bayer图像中各颜色分量空间域内的相关性; 对变换后的各分量DCT系数使用标准JPEG2000算法独立完成小波变换、Tier1编码、MQ编码和率失真斜率计算等, 再基于率失真斜率联合截取方法完成各个分量的码流截取, 即使用相同的率失真斜率门限值, 按照率失真斜率值由高到低的顺序依次完成所有分量编码码块的码流截取, 最后各个分量的截取结果再进行独立的码流组织输出。在RBCR算法中通过加入DCT变换降低Bayer图像相关性和对各个分量码流的率失真斜率联合截取, 提高恢复图像质量且精确控制了码率。实验结果表明, RBCR算法与各个分量独立压缩方法相比, 恢复图像质量得到提升, 尤其在4倍的压缩倍数下效果最佳, 峰值信噪比平均提高1.814 dB,复杂峰值信噪比平均提高2.414 dB。可以满足深空探测低复杂度和高质量图像的要求。
Abstract
Based on the JPEG2000 compression framework, an RBCR compression algorithm for Bayer remote sensing images with high quality was proposed in this study. In this algorithm, the color components of the Bayer image were separated, and the processing unit subgraphs were obtained. Each subgraph undergoes a 1×4 integer discrete cosine transform, so the correlation of the four color component space domain in Bayer images was reduced. The JPEG2000 algorithm was used to perform the wavelet transform, Tier1 coding, MQ coding, and rate-distortion slope calculation on the transformed DCT coefficients; subsequently, the code stream interception of each component was completed based on the rate-distortion slope joint interception method. In accordance with the rate-distortion slope values arranged in descending order to complete the code stream interception of all component encoding code blocks, the interception result of each component was finally subjected to the independent stream organization output. In the RBCR algorithm, by adding the DCT transform to reduce the Bayer image correlation and intercepting the rate-distortion slope of each component stream, the recovery image quality was improved and the code rate is accurately controlled. The experimental results show that, compared with each component independent compression method, the RBCR algorithm has improved image quality. At 4 times the compression ratio, the peak signal-to-noise ratio increased by an average of 1.814 dB, and the signal-to-noise ratio increased by an average of 2.414 dB, which meets the requirements of low computational complexity and high image quality for deep space detection.
参考文献

[1] KAWAGUCHI J, LAURINI K C, HUFENBACH B, et al.. Global space exploration policies and plans: insights from developing the isecg global exploration roadmap[C]. International Astronautical Congress, 2011: 237-240.

[2] KATHLEEN C. LAURINI, WILLIAM H. GERSTENMAIER. The Global Exploration Roadmap and its significance for NASA[M]. Space Policy 2014,30(3): 149-155.

[3] Vision and Voyages for Planetary Science in the Decade 2013-2022[M]. Committe on the Planetary Science Decadal Survey, Space Studies Board, Division on Engineering and Physical Sciences, National Research Council, 2011.

[4] YU D Y, SUN Z Z, MENG L Z,et al.. The development process and prospects for Mars exploration [J]. Journal of Deep Space Exploration, 2016, 3(2): 108-113.

[5] WU WEIREN, YU DENGYUN. Development of deep space exploration and its future key technologies[J]. Journal of Deep Space Exploration, 2014, 1(3): 5-13.

[6] BELL J F, SQUYRES S W, HERKENHOFF K E, et al.. Mars exploration rover athena panoramic camera (pancam) investigation[J]. Journal of Geophysical Research: Planets, 2003, 108(12) 433-439.

[7] GWINNER K, SCHOLTEN F, PREUSKER F, et al.. Topography of Mars from global mapping by HRSC high-resolution digital terrain models and orthoimages: Characteristics and performance[J]. Earth & Planetary Science Letters,2010,294(3): 506-519.

[8] PENG WANG, RAJESH MENON. Ultra-high-sensitivity color imaging via a transparent diffractive-filter array and computational optics [J]. 2015, 2(11): 933-939.

[9] MALIN MC, RAVINE MA, CAPLINGER MA, et al.. The Mars Science Laboratory (MSL) mast cameras and descent imager: investigation and instrument descriptions[J]. Earth Space Sci, 2017, 4(8): 506-539.

[10] RUEFFER P, BORRMANN A. Versatile image data compression for the Beagle 2 probe[C]. Geoscience and Remote Sensing Symposium, 2003. IGARSS ′03. Proceedings. 2003 IEEE International. IEEE, 2003: 1823-1825.

[11] YAQIONG Y, RUIBIN Z, CAICHENG S. JPEG2000 compression and decompression system based on Bayer image[J]. 2013 IEEE 11th International Conference on Electronic Measurement & Instruments, 2013, 2: 938-942.

[12] 贾松敏, 李柏杨, 张国梁. 采用混合回环检测与闭环优化的TSDF地图创建[J]. 光学 精密工程, 2018,26(6): 1497-1506.

    JIA S M, LI B Y, ZHANG G L. TSDF map building based on hybrid loopback detection and closed-loop optimization[J]. Opt. Precision Eng., 2018, 26(6): 1497-1506. (in Chinese)

[13] XIE S Z, WANG C Y, YANG Z Q. Image compression using wavelet transform with lifting scheme and SPIHT in digital cameras for Bayer CFA[C]. International Conference on Wavelet Analysis and Pattern Recognition. IEEE, 2013: 163-167.

[14] LARABI M C. A JPEG-like algorithm for compression of single-sensor camera image[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2011, 7876(3): 298-306.

[15] 张宁, 冯书谊, 濮建福,等. 多光谱遥感图像CCSDS动态码率控制近无损压缩[J]. 光学 精密工程, 2015,23(6): 1783-1790.

    ZHANG N, FENG SH W, PU J F, et al.. Dynamic rate control for CCSDS nearly lossless compression of multispectral remote image[J]. Optics and Precision Engineering, 2015, 23(6): 1783-1790. (in Chinese)

[16] XIE S, WANG C, YANG Z. Bayer patterned image compression based on APIDCBT-JPEG and all phase IDCT interpolation[J]. 2013 IEEE Third International Conference on Information Science and Technology (ICIST), 2013, 3: 23 -25.

[17] GU Y, JIANG H, XIE X, et al.. An image compression algorithm for wireless endoscopy and its ASIC implementation[J]. 2016 IEEE Biomedical Circuits and Systems Conference (BioCAS), 2016, 10: 103-106.

[18] TAUBMAN D. High performance scalable image compression with EBCOT[J]. IEEE Trans Image Process, 2000, 9(7): 1158-1170.

[19] TAUBMAN D S, MARCELLIN M W. JPEG2000: Image compression fundamentals, standards and practice [J]. Springer International, 2002, 11(2): 286.

[20] TRENSCHEL T, BRETSCHNEIDER T, LEEDHAM G. Using JPEG2000 on-board mini-satellites for image-driven compression[C]. Geoscience and Remote Sensing Symposium, 2003. IGARSS ′03. Proceedings. 2003 IEEE International. IEEE, 2003: 2033-2035.

[21] 张红颖, 李灿锋. 结合特征在线选择与协方差矩阵的压缩跟踪算法[J]. 光学 精密工程, 2017,25(4): 1051-1059.

    ZHANG H Y, LI C F, Compressive tracking algorithm combining online feature selection with covariance matrix[J]. Opt. Precision Eng., 2017, 25(4): 1051-1059. (in Chinese)

[22] 王敏敏, 孙胜利. 并行压缩成像系统的压缩域小目标检测[J]. 光学 精密工程, 2016,24(10): 2549-2556.

    WANG M M, SUN SH L. Small target detection in compressed domain for parallel compression imaging system [J]. Opt. Precision Eng., 2016, 24(10): 2549-2556. (in Chinese)

[23] BISIO I, LAVAGETTO F, MARCHESE M. Comparative Analysis of Image Compression Algorithms for Deep Space Communications Systems[M]. Berlin: Personal Satellite Services. Springer Berlin Heidelberg, 2010: 63-73.

[24] FISCHER C E, MULLER D, MOORTEL I D. JPEG2000 image compression on solar EUV images[J]. Solar Physics, 2017, 292(1): 16.

[25] XIE S, WANG C, YANG Z. Bayer patterned image compression based on APIDCBT-JPEG and all phase IDCT interpolation[J]. 2013 IEEE Third International Conference on Information Science and Technology (ICIST), 2013.

[26] BOUGUEZEL S, AHMAD M O, SWAMY M N S. A low-complexity parametric transform for image compression[C]. IEEE International Symposium on Circuits and Systems. IEEE, 2011: 2145-2148.

[27] CINTRA R J, BAYER F M. A DCT approximation for image compression[J]. IEEE Signal Processing Letters, 2011, 18(10): 579-582.

[28] ROMA N, SOUSA L. Efficient hybrid DCT-domain algorithm for video spatial downscaling[J]. EURASIP Journal on Advances in Signal Processing, 2007, 2007(1): 57291-57307.

[29] LIU G, YAN G, ZHAO S, et al.. A complexity-efficient and one-pass image compression algorithm for wireless capsule endoscopy[J]. Technol Health Care, 2015, 23(2): 239-247.

[30] RIJKSE K. H.263: video coding for low-bit-rate communication[J]. IEEE Communications Magazine, 1996, 34(12): 42-45.

[31] JV TEAM. Draft ITU-T Recommendation and Final draft international standard of joint video specification[J]. ITU-T Rec. H. 264 and ISO/IEC 14496-10 AVC, 2003.

[32] ARAI Y, AGUI T, NAKAJIMA M. A fast DCT-SQ scheme for images[C]. Trans. IEICE, 1988: 1095-1097.

[33] SWELDENS W. The Lifting Scheme: A custom-design construction of biorthogonal wavelets[J]. Applied & Computational Harmonic Analysis, 1996, 3(2): 186-200.

雷杰, 于露露, 罗晓红, 李云松. 面向深空探测Bayer图像的高效编码[J]. 光学 精密工程, 2019, 27(1): 191. LEI Jie, YU Lu-lu, LUO Xiao-hong, LI Yun-song. Efficient coding method for deep space detection Bayer pattern image[J]. Optics and Precision Engineering, 2019, 27(1): 191.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!