红外技术, 2010, 32 (12): 683, 网络出版: 2011-04-28  

轨控推进器喷管对尾焰红外辐射的影响研究

Influence of the Attitude Thruster Nozzle on the Plume Infrared Radiation
作者单位
电子工程学院 安徽省红外与低温等离子体重点实验室,安徽 合肥 230037
摘要
针对关于卫星推进器尾焰的红外特性研究较少的现状,对某双组元轨控推进器尾焰的红外辐射进行数值模拟。采用贴体坐标系下的有限体积法,联合求解较复杂形状的喷管扩张段和尾焰的辐射传递方程,得到尾焰的光谱和3~5 μm的波段辐射强度。为精确计算尾焰的红外辐射,全面评估了喷管扩张段的辐射对后端尾焰红外辐射的影响。通过对比分析,当天顶角θ=7π/16时,距离喷口的位置越近,尾焰辐射受到扩张段的影响越剧烈;若扩张段内壁的发射率减小,尾焰在θ=7π/16方向上的波段辐射强度则会变小;喷口近处的尾焰,在扩张段辐射影响下,计算得到的波段辐射强度数值远大于忽略扩张段的影响下得到的数值。得出结论:在考虑喷管扩张段辐射的影响下,能够很好地改善轨控推进器尾焰红外辐射的计算准确性。
Abstract
As lacking study on satellite thruster plume infrared characteristics, the infrared radiation of a bi-propellant orbit thruster plume were numerical simulated. The radiative transfer equations of the plume and the relatively complex shape nozzle expanding segment were solved simultaneously by using the Finite Volume Method in body-fitted coordinate. The plume radiation spectral and 3~5 μm band radiative intensity were obtained. In order to accurately calculate the plume infrared radiation, how the nozzle exiting section radiation influenced the plume radiative intensity was evaluated. Through comparison and analysis, we found that, when the distance between the plume and the nozzle exiting section get close, the plume radiation at θ=7π/16 will be affected by the nozzle expanding more and more; when the emissivity of the inside nozzle wall is reduced, the plume band radiative intensity at θ=7π/16 will decrease; near to the nozzle exiting section, the plume band radiative intensity value influenced by the nozzle expanding is far lager than the value taking no account of the influence. It is concluded that the calculation accuracy of the orbit thruster plume infrared radiation is improved when taking account of the influence from the nozzle expanding segment.
参考文献

[1] 张小英, 朱定强, 蔡国飙. 固体火箭羽流红外特性的DOM法模拟及高度影响研究[J]. 宇航学报, 2007, 28(3): 702-706.

[2] 樊士伟, 张小英, 朱定强, 等. 用FVM法计算固体火箭羽流的红外特性[J]. 宇航学报, 2005, 26(6): 793-797.

[3] 帅永, 董士奎, 谈和平. 数值模拟喷焰2.7微米红外辐射特性[J]. 航空学报, 2005, 26(4): 402-405.

[4] 阮立明, 齐宏, 王圣刚, 等. 导弹尾喷焰目标红外特性的数值仿真[J]. 红外与激光工程, 2008, 37(6): 959-962.

[5] 贺志宏, 谈和平, 刘林华. 有限体积法求解圆柱形散射介质内辐射与导热耦合换热[J]. 工程热物理学报, 2000, 21(3): 338-341.

[6] Siegel R, Howell J R. Thermal radiation heat transfer, 4th Edition[M]. New York: Taylor & Francis, 2002: 681-695.

[7] Min-Ho Koo, Darrell I.Leap. Modeling three-dimensional groundwater flows by the body-fitted coordinate (BFC) method: I. Stationary Boundary Problems [J]. Transport in Porous Media, 1998, 30: 217-239.

[8] LIU J, SHUANG H M, CHEN Y S. Prediction of radiative transfer in general body-fitted coordinates[J]. Numerical Heat Tranfer, Part B, 1997, 31: 423-439.

金伟, 凌永顺, 吕相银. 轨控推进器喷管对尾焰红外辐射的影响研究[J]. 红外技术, 2010, 32(12): 683. JIN Wei, LING Yong-shun, LV Xiang-yin. Influence of the Attitude Thruster Nozzle on the Plume Infrared Radiation[J]. Infrared Technology, 2010, 32(12): 683.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!