红外与激光工程, 2017, 46 (8): 0806007, 网络出版: 2017-11-07   

光学薄膜激光损伤阈值测量不确定度

Measurement uncertainty of laser-induced damage threshold of the optical thin films
作者单位
1 西安工业大学 陕西省薄膜技术与光学检测重点实验室, 陕西 西安 710021
2 白俄罗斯国立信息与无线电电子大学, 白俄罗斯 明斯克 220013
摘要
光学薄膜的激光损伤阈值是评价其激光耐受性能好坏的一个重要指标。对薄膜激光损伤阈值的准确评价和测定, 是判断其激光耐受性能和进行相互比对的基础。通过对激光损伤阈值测试系统误差的溯源分析和计算机模拟, 给出了优化测试系统的方向。研究结果表明: 在激光光斑确定的情况下, 激光能量越高, 能量密度的误差越大。因此在满足需要的情况下, 应该尽可能选取较低的激光能量。在激光能量确定的情况下, 存在一个临界光斑, 当小于临界光斑时, 能量密度误差变化非常剧烈, 光斑越小, 能量密度误差越大。测试系统的激光光斑大于临界光斑时系统的误差较小, 小于临界光斑时系统的误差急剧变大。因此, 在激光损伤阈值测试系统中, 应该优选临界光斑或者大于临界光斑。激光损伤阈值拟合产生的最大误差为最大能级的激光能量误差, 因此要尽可能降低激光器的脉冲能量。由此可见, 设计合理的系统参数, 可以最大程度降低测量结果的不确定度。
Abstract
The laser-induced damage threshold (LIDT) of optical films is an important index for assessing the film′s properties of laser tolerance. Accurate measurement for the LIDT is the foundation of laser tolerance estimation and data comparison of the thin films. Based on the analysis and computer simulation, the optimization ways of laser-induced damage threshold was presented in this paper. The results show that the error of the energy density increased with the increase of the laser energy at a fixed laser spot. Therefore, in the case of satisfying the need, it is better to choose low laser energy for the testing system. Under the fixed laser energy, there will be a critical laser spot. The error of the energy density changed strongly with the spot size change: smaller spot size, bigger energy density error. The small gentle energy density error can be obtained at the laser spot size greater than the critical laser spot, vice versa. Therefore, it is better to choose the spot size equal or greater than the critical laser spot size. The fitting maximum error is equal to that of the error of the maximum laser energy level. Thus it can be seen that the uncertainty of a LIDT test system can be reduced through designing suitable laser parameters.
参考文献

[1] Chi Fangtin, Zhang Qian, Zhang Lingjie, et al. Nanostructured magnesium fluoride antireflective films with ultra-high laser induced damage thresholds [J]. Materials Letters, 2015, 150: 28-30.

[2] Zhu Meiping, Yi Kui, Li Dawei, et al. Influence of SiO2 overcoat layer and electric field distribution on laser damage threshold and damage morphology of transport mirror coatings[J]. Optics Communications, 2014, 319: 75-79.

[3] 周成虎, 张秋慧, 黄明明, 等. 杂质微粒对薄膜的损伤效应[J]. 红外与激光工程, 2016, 45(7): 0721004.

    Zhou Chenghu, Zhang Qiuhui, Huang Mingming, et al. Damage effects of impurity particles on film [J]. Infrared and Laser Engineering, 2016, 45(7): 0721004. (in Chinese)

[4] 朱耀南. 光学薄膜激光损伤阈值测试方法的介绍和讨论[J]. 激光技术, 2006, 30(5): 532-535.

    Zhu Yaonan. Discussion of the measurement methods for laser induced damage threshold of optical coating [J]. Laser Technology, 2006, 30(5): 532-535. (in Chinese)

[5] 胡建平, 马平, 许乔. 光学元件的激光损伤阈值测量[J]. 红外与激光工程, 2006, 35(2): 187-191.

    Hu Jianping, Ma Ping, Xu Qiao. Laser damage threshold measurement of the optical elements [J]. Infrared and Laser Engineering, 2006, 35(2): 187-191. (in Chinese)

[6] 李大伟, 赵元安, 贺洪波, 等. 光学元件激光损伤阈值的指数拟合法以及测试误差分析[J]. 中国激光, 2008, 35(2): 273-275.

    Li Dawei, Zhao Yuan′an, He Hongbo, et al. Exponential fitting of laser damage threshold and analysis of testing errors [J]. Chinese Journal of Lasers, 2008, 35(2): 273-275. (in Chinese)

[7] 许程, 董洪成, 肖祁陵, 等. 不同方法制备的Ta2O5薄膜光学性能和激光损伤阈值的对比分析[J]. 中国激光, 2008, 35(10): 1595-1599.

    Xu Cheng, Dong Hongcheng, Xiao Qiling, et al. Optical properties and laser-induced damage threshold of Ta2O5 films deposited by different methods [J]. Chinese Journal of Lasers, 2008, 35(10): 1595-1599. (in Chinese)

[8] 蒲云体, 陈松林, 乔曌, 等. 渐变折射率Ta2O5/SiO2薄膜多脉冲激光损伤特性[J]. 强激光与粒子束, 2014, 26(2): 022019-1-4.

    Pu Yunti, Chen Songlin, Qiao Zhao, et al. Multi-shot laser damage effects on Ta2O5/SiO2 gradient-index optical thin film [J]. High Power Laser and Particle Beams, 2014, 26(2): 022019-1-4. (in Chinese)

[9] Amir Hassanpour, Alireza Bananej. The effect of time-temperature gradient annealing on microstructure, optical properties and laser-induced damage threshold of TiO2 thin films [J]. Optik - International Journal for Light and Electron Optics, 2013, 124(1): 35-39.

[10] Alireza Bananej, Amir Hassanpour, Hossein Razzaghi, et al. The effect of porosity on the laser induced damage threshold of TiO2 and ZrO2 single layer films [J]. Optics & Laser Technology, 2010, 42(8): 1187-1192.

[11] International Standard: ISO11254-1-2000, Laser and laser-related equipment-determination of laser-induced damage threshold of optical surface-part1: 1-on-1 test [S], 2000.

[12] 谈恒英, 刘鹏程, 施柏煊. 激光光热偏转成象法无损检测光学薄膜的激光损伤[J]. 光子学报, 2005, 34(1): 158-160.

    Tan Hengying, Liu Pengcheng, Shi Baixuan. Non destructive testing of laser induced damage in optical thin films by laser photothermal deflection image [J]. Acta Photonica Sinica, 2005, 34(1): 158-160. (in Chinese)

[13] 何长涛, 马孜, 陈建国, 等. 基于图像相似的薄膜激光损伤识别[J]. 激光杂志, 2007, 28(1): 60-61.

    He Changtao, Ma Zi, Chen Jianguo, et al. The method of judging film damage based on image similarity [J]. Laser Journal, 2007, 28(1): 60-61. (in Chinese)

[14] 娄俊, 苏俊宏, 徐均琪, 等. He-Ne散射光检测光学薄膜激光损伤阈值[J]. 应用光学, 2008, 29(1): 131-135.

    Lou Jun, Su Junhong, Xu Junqi, et al. Laser-induced damage threshold detection for optical thin films by scattered light of He-Ne laser [J]. Journal of Applied Optics, 2008, 29(1): 131-135. (in Chinese)

[15] 吴周令, 范正修, 苏星, 等. 光学薄膜激光损伤的光热偏转法实时研究[J]. 光学学报, 1990, 10(3): 245-252.

    Wu Zhouling, Fan Zhengxiu, Su Xing, et al. In-situ investigation of laser-induced damage in optical coatings by photothermal deflection technique [J]. Acta Optica Sinica, 1990, 10(3): 245-252. (in Chinese)

徐均琪, 苏俊宏, 葛锦蔓, 基玛 格拉索夫. 光学薄膜激光损伤阈值测量不确定度[J]. 红外与激光工程, 2017, 46(8): 0806007. Xu Junqi, Su Junhong, Ge Jinman, Golosov Dmitriy A. Measurement uncertainty of laser-induced damage threshold of the optical thin films[J]. Infrared and Laser Engineering, 2017, 46(8): 0806007.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!