发光学报, 2017, 38 (12): 1567, 网络出版: 2017-12-25   

氮掺杂高量子产率荧光碳点的制备及其体外生物成像研究

Preparation of N-doped Fluorescent Carbon Dots with High Quantum Yield for In-vitro Bioimaging
作者单位
1 上海交通大学 材料科学与工程学院, 上海 200240
2 纳米技术及应用国家工程研究中心, 上海 200241
摘要
为获得高量子产率的碳点, 以柠檬酸为碳源, 苯二胺的3种同分异构体为氮源, 采用两步溶剂热法制备了氮掺杂荧光碳点。利用透射电子显微镜(TEM)、紫外-可见吸收光谱 (UV-Vis)、荧光光谱、红外光谱 (FTIR)、X射线光电子能谱(XPS)对样品进行表征, 并考察了碳点的细胞毒性和体外生物成像。实验结果表明: 3种高量子产率碳点(Y=52%, 60.4%, 53.2%)的粒径均一, 具有较好的分散性, 平均尺寸分别为4.5, 5.3, 5.2 nm。碳点表面含有羟基、羧基、胺基等基团, 在紫外光激发下均能发出明亮的蓝色荧光, 并具有稳定的荧光性能。细胞实验表明: 3种碳点具有较好的生物相容性, 能够快速进入细胞并成功应用于细胞的荧光成像。
Abstract
In order to obtain carbon dots with high quantum yield, a simple two-step solvothermal method was used to prepare fluorescent N-doped carbon dots with citric acid as carbon source and three isomers of phenylenediamine as nitrogen source. The carbon dots were characterized by Transmission electron microscopy (TEM), ultraviolet-visible spectrophotometry (UV-Vis), fluorescence spectrophotometry, Fourier transform infrared spectra (FTIR), X-ray photoelectron spectroscopy (XPS), followed by studying the cytotoxicity and in-vitro bioimaging. The results show that three kinds of high quantum yield carbon dots (Y=52%, 60.4% and 53.2%) possessing uniform size and excellent dispersibility have been successfully prepared, and the average size is 4.5, 5.3, 5.2 nm. The prepared carbon dots with hydroxyl, carboxyl, amine and other groups on the surface can emit bright blue fluorescence under the excitation of ultraviolet light, holding favorable optical stability at the same time. In addition, the cell imaging experiments indicate that the three kinds of carbon dots have good biocompatibility, capable of rapidly entering cells and successfully applied to fluorescence imaging of cells.
参考文献

[1] PRATO M. Fullerene chemistry for materials science applications [J]. J. Mater. Chem., 1997, 7(7):1097-1109.

[2] YANG S T, CAO L, LUO P G, et al.. Carbon dots for optical imaging in vivo [J]. J. Am. Chem. Soc., 2009, 131(32):11308-11309.

[3] 娄庆, 曲松楠. 基于超级碳点的水致荧光“纳米炸弹” [J]. 中国光学, 2015, 8(1):91-98.

    LOU Q, QU S N. Water triggered luminescent ‘nano-bombs’ based on supra-carbon-nanodots [J]. Chin. Opt., 2015, 8(1):91-98. (in Chinese)

[4] XU X, RAY R, GU Y, et al.. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments [J]. J. Am. Chem. Soc., 2004, 126(40):12736-12737.

[5] SUN Y P, ZHOU B, LIN Y, et al.. Quantum-sized carbon dots for bright and colorful photoluminescence [J]. J. Am. Chem. Soc., 2006, 128(24):7756-7757.

[6] WANG W, LI Y M, CHENG L, et al.. Correction: water-soluble and phosphorus-containing carbon dots with strong green fluorescence for cell labeling [J]. J. Mater. Chem. B, 2013, 2(1):46-48.

[7] ZHUO Y, MIAO H, ZHONG D, et al.. One-step synthesis of high quantum-yield and excitation-independent emission carbon dots for cell imaging [J]. Mater. Lett., 2015, 139:197-200.

[8] WANG X, CAO L, YANG S T, et al.. Bandgap-like strong fluorescence in functionalized carbon nanoparticles [J]. Angew. Chem. Int. Ed., 2010, 49(31):5310-5314.

[9] CAO L, SAHU S, ANILKUMAR P, et al.. Carbon nanoparticles as visible-light photocatalysts for efficient CO2 conversion and beyond [J]. J. Am. Chem. Soc., 2011, 133(13):4754-4757.

[10] WANG Q L, HUANG X X, LONG Y J, et al.. Hollow luminescent carbon dots for drug delivery [J]. Carbon, 2013, 59:192-199.

[11] LIM S Y, SHEN W, GAO Z. Carbon quantum dots and their applications [J]. Chem. Soc. Rev., 2015, 44(1):362-381.

[12] ZHAO H X, LIU L Q, LIU Z D, et al.. Highly selective detection of phosphate in very complicated matrixes with an off-on fluorescent probe of europium-adjusted carbon dots [J]. Chem. Commun., 2011, 47(9):2604-2606.

[13] DMITRI V T, ANDREY L R, KORNOWAKI A, et al.. Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture [J]. Nano Lett., 2001, 1(4):207-211.

[14] LIU P P, ZHANG C C, LIU X, et al.. Preparation of carbon quantum dots with a high quantum yield and the application in labeling bovine serum albumin [J]. Appl. Surf. Sci., 2016, 368:122-128.

[15] DONG Y Q, SHAO J W, CHEN C Q, et al.. Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid [J]. Carbon, 2012, 50(12):4738-4743.

[16] ZHANG Y, CUI P P, ZHANG F, et al.. Fluorescent probes for “off-on” highly sensitive detection of Hg2+ and L-cysteine based on nitrogen-doped carbon dots [J]. Talanta, 2016, 152:288-300.

[17] ZHU S J, MENG Q N, WANG L, et al.. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging [J]. Angew. Chem. Int. Ed., 2013, 52(14):3953-3957.

[18] HU Y, YANG J, TIAN J, et al.. Waste frying oil as a precursor for one-step synthesis of sulfur-doped carbon dots with pH-sensitive photoluminescence [J]. Carbon, 2014, 77:775-782.

[19] QU S N, WANG X Y, LU Q P, et al.. A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots [J]. Angew. Chem. Int. Ed., 2012, 51(49):123821-12384.

[20] ZHAI X, ZHANG P, LIU C, et al.. Highly luminescent carbon nanodots by microwave-assisted pyrolysis [J]. Chem. Commun., 2012, 48(64):7955-7957.

[21] PARAKNOWITSCH J P, ZHANG Y, WIENERT B, et al.. Nitrogen- and phosphorus-co-doped carbons with tunable enhanced surface areas promoted by the doping additives [J]. Chem. Commun., 2012, 49(12):1208-1210.

[22] 王子儒, 张光华, 郭明媛. N掺杂碳量子点光稳定剂的制备及光学性能 [J]. 发光学报, 2016, 37(6):655-661.

    WANG Z R, ZHANG G H, GUO M Y. Preparation and optical properties of N-doped carbon dots as light stabilizer [J]. Chin. J. Lumin., 2016, 37(6):655-661. (in Chinese)

[23] LI X, ZHU G, XU Z. Nitrogen-doped carbon nanotube arrays grown on graphene substrate [J]. Thin Solid Films, 1959, 520(6):1959-1964.

[24] YANG Z, XU M, LIU Y, et al.. Nitrogen-doped, carbon-rich, highly photoluminescent carbon dots from ammonium citrate [J]. Nanoscale, 2014, 6(3):1890-1895.

[25] LIU R, WU D, LIU S, et al.. An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers [J]. Angew. Chem. Int. Ed., 2009, 48(25):4598-4601.

[26] HEDI M, J M M, ELLEN R G, et al.. Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein [J]. J. Am. Chem. Soc., 2000, 122(122):12142-12150.

姜杰, 李士浩, 严一楠, 何丹农. 氮掺杂高量子产率荧光碳点的制备及其体外生物成像研究[J]. 发光学报, 2017, 38(12): 1567. JIANG Jie, LI Shi-hao, YAN Yi-nan, HE Dan-nong. Preparation of N-doped Fluorescent Carbon Dots with High Quantum Yield for In-vitro Bioimaging[J]. Chinese Journal of Luminescence, 2017, 38(12): 1567.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!