Frontiers of Optoelectronics, 2017, 10 (2): 103, 网络出版: 2018-01-17  

Hole-transporting layer-free inverted planar mixed lead-tin perovskite-based solar cells

Hole-transporting layer-free inverted planar mixed lead-tin perovskite-based solar cells
作者单位
1 Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
2 School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
3 University of Chinese Academy of Sciences, Beijing 100049, China
摘要
Abstract
Mixed lead-tin (Pb-Sn) perovskites present a promising strategy to extend the light-harvesting range of perovskite-based solar cells (PSCs). The use of electrontransporting layer or hole-transporting layer (HTL) is critical to achieve high device efficiency. This strategy, however, requires tedious layer-by-layer fabrication as well as high-temperature annealing for certain oxides. In this work, we fabricated HTL-free planar FAPb0.5Sn0.5I3 PSCs with the highest efficiency of 7.94%. High shortcircuit current density of 23.13 mA/cm2 was attained, indicating effective charge extraction at the ITO/ FAPb0.5Sn0.5I3 interface. This finding provides an alternative strategy to simplify the manufacture of singlejunction or tandem PSCs.
参考文献

[1] Sun S, Salim T, Mathews N, Duchamp M, Boothroyd C, Xing G, Sum T C, Lam Y M. The origin of high efficiency in lowtemperature solution-processable bilayer organometal halide hybrid solar cells. Energy & Environmental Science, 2014, 7(1): 399-407

[2] Park N G. Perovskite solar cells: an emerging photovoltaic technology. Materials Today, 2015, 18(2): 65-72

[3] Ishihara T. Optical properties of PbI-based perovskite structures. Journal of Luminescence, 1994, 60-61: 269-274

[4] Zhang W, Saliba M, Stranks S D, Sun Y, Shi X, Wiesner U, Snaith H J. Enhancement of perovskite-based solar cells employing coreshell metal nanoparticles. Nano Letters, 2013, 13(9): 4505-4510

[5] Wehrenfennig C, Eperon G E, Johnston M B, Snaith H J, Herz L M. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Advanced Materials, 2014, 26(10): 1584-1589

[6] Ponseca C S Jr, Savenije T J, Abdellah M, Zheng K, Yartsev A, Pascher T, Harlang T, Chabera P, Pullerits T, Stepanov A, Wolf J P, Sundstr m V. Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination. Journal of the American Chemical Society, 2014, 136(14): 5189-5192

[7] Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342(6156): 341-344

[8] Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Gr tzel M, Mhaisalkar S, Sum T C. Long-range balanced electron- and holetransport lengths in organic-inorganic CH3NH3PbI3. Science, 2013, 342(6156): 344-347

[9] ong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J. Electron-hole diffusion lengths> 175 mm in solution-grown CH3NH3PbI3 single crystals. Science, 2015, 347(6225): 967-970

[10] Green M A, Ho-Baillie A, Snaith H J. The emergence of perovskite solar cells. Nature Photonics, 2014, 8(7): 506-514

[11] Snaith H J. Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. Journal of Physical Chemistry Letters, 2013, 4(21): 3623-3630

[12] Liu M, Johnston M B, Snaith H J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013, 501 (7467): 395-398

[13] Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131(17): 6050-6051

[14] Solar cell efficiency table, www.nrel.gov/ncpv/; accessed: April 2016

[15] Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S I. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348(6240): 1234-1237

[16] Shockley W, Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells. Journal of Applied Physics, 1961, 32(3): 510-519

[17] Zhao D, Yu Y,Wang C, Liao W, Shrestha N, Grice C R, Cimaroli A J, Guan L, Ellingson R J, Zhu K, Zhao X, Xiong R G, Yan Y. Lowbandgap mixed tin-lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells. Nature Energy, 2017, 2: 17018

[18] Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012, 338(6107): 643-647

[19] Eperon G E, Burlakov V M, Docampo P, Goriely A, Snaith H J. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Advanced Functional Materials, 2014, 24(1): 151-157

[20] Liu D, Kelly T L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nature Photonics, 2013, 8(2): 133-138

[21] Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y, Yang Y. Interface engineering of highly efficient perovskite solar cells. Science, 2014, 345(6196): 542-546

[22] Jeng J Y, Chiang Y F, Lee M H, Peng S R, Guo T F, Chen P,Wen T C. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Advanced Materials, 2013, 25(27): 3727-3732

[23] Nie W, Tsai H, Asadpour R, Blancon J C, Neukirch A J, Gupta G, Crochet J J, Chhowalla M, Tretiak S, Alam MA,Wang H L, Mohite A D. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science, 2015, 347(6221): 522-525

[24] Heo J H, Han H J, Kim D, Ahn T K, Im S H. Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy & Environmental Science, 2015, 8(5): 1602-1608

[25] Wang J T W, Wang Z, Pathak S, Zhang W, deQuilettes D W, Wisnivesky-Rocca-Rivarola F, Huang J, Nayak P K, Patel J B, Mohd Yusof H A, Vaynzof Y, Zhu R, Ramirez I, Zhang J, Ducati C, Grovenor C, Johnston M B, Ginger D S, Nicholas R J, Snaith H J. Efficient perovskite solar cells by metal ion doping. Energy & Environmental Science, 2016, 9(9): 2892-2901

[26] Liu L, Mei A, Liu T, Jiang P, Sheng Y, Zhang L, Han H. Fully printable mesoscopic perovskite solar cells with organic silane selfassembled monolayer. Journal of the American Chemical Society, 2015, 137(5): 1790-1793

[27] Yang Y, Ri K, Mei A, Liu L, Hu M, Liu T, Li X, Han H. The size effect of TiO2 nanoparticles on a printable mesoscopic perovskite solar cell. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(17): 9103-9107

[28] Luo Q, Ma H, Zhang Y, Yin X, Yao Z,Wang N, Li J, Fan S, Jiang K, Lin H. Cross-stacked superaligned carbon nanotube electrodes for efficient hole conductor-free perovskite solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2016, 4(15): 5569-5577

[29] Yang Y, Xiao J,Wei H, Zhu L, Li D, Luo Y,Wu H, Meng Q. An allcarbon counter electrode for highly efficient hole-conductor-free organo-metal perovskite solar cells. RSC Advances, 2014, 4(95): 52825-52830

[30] Yu Z, Chen B, Liu P, Wang C, Bu C, Cheng N, Bai S, Yan Y, Zhao X. Stable organic-inorganic perovskite solar cells without holeconductor layer achieved via cell structure design and contact engineering. Advanced Functional Materials, 2016, 26(27): 4866- 4873

[31] Ye S, Rao H, Yan W, Li Y, Sun W, Peng H, Liu Z, Bian Z, Li Y, Huang C. A strategy to simplify the preparation process of perovskite solar cells by Co-deposition of a hole-conductor and a perovskite layer. Advanced Materials, 2016, 28(43): 9648-9654

[32] Hu Q,Wu J, Jiang C, Liu T, Que X, Zhu R, Gong Q. Engineering of electron-selective contact for perovskite solar cells with efficiency exceeding 15%. ACS Nano, 2014, 8(10): 10161-10167

[33] Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Gr tzel M, Han H. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science, 2014, 345(6194): 295-298

[34] Tsai K W, Chueh C C, Williams S T, Wen T C, Jen A K Y. Highperformance hole-transporting layer-free conventional perovskite/ fullerene heterojunction thin-film solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(17): 9128-9132

[35] Li Y, Ye S, Sun W, Yan W, Li Y, Bian Z, Liu Z, Wang S, Huang C. Hole-conductor-free planar perovskite solar cells with 16.0% efficiency. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(36): 18389-18394

[36] Bao X, Zhu Q, Qiu M, Yang A, Wang Y, Zhu D, Wang J, Yang R. High-performance inverted planar perovskite solar cells without a hole transport layer via a solution process under ambient conditions. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(38): 19294-19298

[37] Zhang Y, Hu X, Chen L, Huang Z, Fu Q, Liu Y, Zhang L, Chen Y. Flexible, hole transporting layer-free and stable CH3NH3PbI3/ PC61BM planar heterojunction perovskite solar cells. Organic Electronics, 2016, 30: 281-288

[38] Marshall K P, Walker M, Walton R I, Hatton R A. Enhanced stability and efficiency in hole-transport-layer-free CsSnI3 perovskite photovoltaics. Nature Energy, 2016, 1: 16178

[39] Feng H J, Paudel T R, Tsymbal E Y, Zeng X C. Tunable optical properties and charge separation in CH3NH3SnxPb1 - xI3/TiO2-based planar perovskites cells. Journal of the American Chemical Society, 2015, 137(25): 8227-8236

[40] Eperon G E, Leijtens T, Bush K A, Prasanna R, Green T, Wang J T W, McMeekin D P, Volonakis G, Milot R L, May R, Palmstrom A, Slotcavage D J, Belisle R A, Patel J B, Parrott E S, Sutton R J, Ma W, Moghadam F, Conings B, Babayigit A, Boyen H G, Bent S, Giustino F, Herz L M, Johnston M B, McGehee M D, Snaith H J. Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science, 2016, 354(6314): 861-865

[41] Deng Y, Xiao Z, Huang J. Light-induced self-poling effect on organometal trihalide perovskite solar cells for increased device efficiency and stability. Advanced Energy Materials, 2015, 5(20): 1500721

[42] Kumar M H, Dharani S, Leong W L, Boix P P, Prabhakar R R, Baikie T, Shi C, Ding H, Ramesh R, Asta M, Graetzel M, Mhaisalkar S G, Mathews N. Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation. Advanced Materials, 2014, 26(41): 7122-7127

[43] Koh T M, Krishnamoorthy T, Yantara N, Shi C, LeongW L, Boix P P, Grimsdale A C, Mhaisalkar S G, Mathews N. Formamidinium tin-based perovskite with low Eg for photovoltaic applications. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(29): 14996-15000

[44] Liao W, Zhao D, Yu Y, Grice C R,Wang C, Cimaroli A J, Schulz P, Meng W, Zhu K, Xiong R G, Yan Y. Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22. Advanced Materials, 2016, 28 (42): 9333-9340

Yuqin LIAO, Xianyuan JIANG, Wenjia ZHOU, Zhifang SHI, Binghan LI, Qixi MI, Zhijun NING. Hole-transporting layer-free inverted planar mixed lead-tin perovskite-based solar cells[J]. Frontiers of Optoelectronics, 2017, 10(2): 103. Yuqin LIAO, Xianyuan JIANG, Wenjia ZHOU, Zhifang SHI, Binghan LI, Qixi MI, Zhijun NING. Hole-transporting layer-free inverted planar mixed lead-tin perovskite-based solar cells[J]. Frontiers of Optoelectronics, 2017, 10(2): 103.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!