Photonics Research, 2020, 8 (9): 09001512, Published Online: Aug. 31, 2020   

Saturable and reverse saturable absorption in molybdenum disulfide dispersion and film by defect engineering Download: 772次

Author Affiliations
1 Shaanxi Joint Laboratory of Graphene, State Key Laboratory of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, School of Physics, Northwest University, Xi’an 710069, China
2 School of Science, Xi’an University of Posts and Telecommunications, Xi’an 710121, China
Copy Citation Text

Chunhui Lu, Hongwen Xuan, Yixuan Zhou, Xinlong Xu, Qiyi Zhao, Jintao Bai. Saturable and reverse saturable absorption in molybdenum disulfide dispersion and film by defect engineering[J]. Photonics Research, 2020, 8(9): 09001512.

References

[1] A. Matin, L. Der-Hsien, K. Daisuke, X. Jun, A. Angelica, N. Jiyoung, S. R. Madhvapathy, A. Rafik, K. Santosh, D. Madan. Near-unity photoluminescence quantum yield in MoS2. Science, 2015, 350: 1065-1068.

[2] K. C. Santosh, R. C. Longo, R. Addou, R. M. Wallace, K. Cho. Impact of intrinsic atomic defects on the electronic structure of MoS2 monolayers. Nanotechnology, 2014, 25: 375703.

[3] S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J. S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, F. Ogletree, J. Li, J. C. Grossman, J. Wu. Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons. Sci. Rep., 2013, 3: 2657.

[4] H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, X. Wang, Z. Ni. Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano, 2014, 8: 5738-5745.

[5] L. Li, Z. Qin, L. Ries, S. Hong, T. Michel, J. Yang, C. Salameh, M. Bechelany, P. Miele, D. Kaplan, M. Chhowalla, D. Voiry. Role of sulfur vacancies and undercoordinated Mo regions in MoS2 nanosheets toward the evolution of hydrogen. ACS Nano, 2019, 13: 6824-6834.

[6] Y. Ouyang, C. Ling, Q. Chen, Z. Wang, L. Shi, J. Wang. Activating inert basal planes of MoS2 for hydrogen evolution reaction through the formation of different intrinsic defects. Chem. Mater., 2016, 28: 4390-4396.

[7] M. K. Kavitha, K. B. Jinesh, R. Philip, P. Gopinath, H. John. Defect engineering in ZnO nanocones for visible photoconductivity and nonlinear absorption. Phys. Chem. Chem. Phys., 2014, 16: 25093-25100.

[8] A. Singh, S. Kumar, R. Das, P. K. Sahoo. Defect-assisted saturable absorption characteristics in Mn doped ZnO nano-rods. RSC Adv., 2015, 5: 88767-88772.

[9] P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, Q. Bao. Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers. ACS Appl. Mater. Interfaces, 2017, 9: 12759-12765.

[10] C. He, L. Zhu, Q. Zhao, Y. Huang, Z. Yao, W. Du, Y. He, S. Zhang, X. Xu. Competition between free carriers and excitons mediated by defects observed in layered WSe2 crystal with time-resolved terahertz spectroscopy. Adv. Opt. Mater., 2018, 6: 800290.

[11] K. Chen, A. Roy, A. Rai, A. Valsaraj, X. Meng, F. He, X. Xu, L. F. Register, S. Banerjee, Y. Wang. Carrier trapping by oxygen impurities in molybdenum diselenide. ACS Appl. Mater. Interfaces, 2017, 10: 1125-1131.

[12] Z. Wu, W. Zhao, J. Jiang, T. Zheng, Y. You, J. Lu, Z. Ni. Defect activated photoluminescence in WSe2 monolayer. J. Phys. Chem. C, 2017, 121: 12294-12299.

[13] K. Chen, R. Ghosh, X. Meng, A. Roy, J.-S. Kim, F. He, S. C. Mason, X. Xu, J.-F. Lin, D. Akinwande, S. K. Banerjee, Y. Wang. Experimental evidence of exciton capture by mid-gap defects in CVD grown monolayer MoSe2. npj 2D Mater. Appl., 2017, 1: 15.

[14] S. Kim, A. Konar, W.-S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, K. Kim. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun., 2012, 3: 1011.

[15] L. Lei, D. Huang, G. Zeng, M. Cheng, D. Jiang, C. Zhou, S. Chen, W. Wang. A fantastic two-dimensional MoS2 material based on the inert basal planes activation: electronic structure, synthesis strategies, catalytic active sites, catalytic and electronics properties. Coord. Chem. Rev., 2019, 399: 213020.

[16] S. Karmakar, S. Biswas, P. Kumbhakar. A comparison of temperature dependent photoluminescence and photo-catalytic properties of different MoS2 nanostructures. Appl. Surf. Sci., 2018, 455: 379-391.

[17] X. Zhang, R. Zhang, Y. Zhang, T. Jiang, S. Qin. Tunable photoluminescence of bilayer MoS2 via interlayer twist. Opt. Mater., 2019, 94: 213-216.

[18] S. Karmakar, S. Biswas, P. Kumbhakar. Low power continuous-wave nonlinear optical effects in MoS2 nanosheets synthesized by simple bath ultrasonication. Opt. Mater., 2017, 73: 585-594.

[19] C. Y. Tang, P. K. Cheng, X. Y. Wang, S. Ma, H. Long, Y. H. Tsang. Size-dependent nonlinear optical properties of atomically thin PtS2 nanosheet. Opt. Mater., 2020, 101: 109694.

[20] R. Wei, H. Zhang, X. Tian, T. Qiao, Z. Hu, Z. Chen, X. He, Y. Yu, J. Qiu. MoS2 nanoflowers as high performance saturable absorbers for an all-fiber passively Q-switched erbium-doped fiber laser. Nanoscale, 2016, 8: 7704-7710.

[21] Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, A. C. Ferrari. Graphene mode-locked ultrafast laser. ACS Nano, 2010, 4: 803-810.

[22] J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, J. H. Lee. Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking. Adv. Funct. Mater., 2016, 26: 7454-7461.

[23] J. Huang, N. Dong, S. Zhang, Z. Sun, W. Zhang, J. Wang. Nonlinear absorption induced transparency and optical limiting of black phosphorus nanosheets. ACS Photon., 2017, 4: 3063-3070.

[24] K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, J. Wang. Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors. Nanoscale, 2014, 6: 10530-10535.

[25] P. Kumbhakar, A. K. Kole, C. S. Tiwary, S. Biswas, S. Vinod, J. Taha-Tijerina, U. Chatterjee, P. M. Ajayan. Nonlinear optical properties and temperature-dependent uv-vis absorption and photoluminescence emission in 2D hexagonal boron nitride nanosheets. Adv. Opt. Mater., 2015, 3: 828-835.

[26] S. Zhang, X. Zhang, H. Wang, B. Chen, K. Wu, K. Wang, D. Hanlon, J. N. Coleman, J. Chen, L. Zhang, J. Wang. Size-dependent saturable absorption and mode-locking of dispersed black phosphorus nanosheets. Opt. Mater. Express, 2016, 6: 3159-3168.

[27] S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, J. Wang. Broadband few-layer MoS2 saturable absorbers. Adv. Mater., 2014, 26: 3538-3544.

[28] S. Salehi, A. Saffarzadeh. Atomic defect states in monolayers of MoS2 and WS2. Surf. Sci., 2016, 651: 215-221.

[29] Y. Zhou, P. Yang, H. Zu, F. Gao, X. Zu. Electronic structures and magnetic properties of MoS2 nanostructures: atomic defects, nanoholes, nanodots and antidots. Phys. Chem. Chem. Phys., 2013, 15: 10385-10394.

[30] K. G. Zhou, M. Zhao, M. J. Chang, Q. Wang, X. Z. Wu, Y. Song, H. L. Zhang. Size-dependent nonlinear optical properties of atomically thin transition metal dichalcogenide nanosheets. Small, 2015, 11: 694-701.

[31] H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, K. P. Loh. Molybdenum disulfide MoS2 as a broadband saturable absorber for ultra-fast photonics. Opt. Express, 2014, 22: 7249-7260.

[32] X.-F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, Q.-H. Xu. Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses. J. Phys. Chem. Lett., 2012, 3: 785-790.

[33] M. He, C. Quan, C. He, Y. Huang, L. Zhu, Z. Yao, S. Zhang, J. Bai, X. Xu. Enhanced nonlinear saturable absorption of MoS2/graphene nanocomposite films. J. Phys. Chem. C, 2017, 121: 27147-27153.

[34] C. Lu, C. Quan, K. Si, X. Xu, C. He, Q. Zhao, Y. Zhan, X. Xu. Charge transfer in graphene/WS2 enhancing the saturable absorption in mixed heterostructure films. Appl. Surf. Sci., 2019, 479: 1161-1168.

[35] L.-P. Feng, J. Su, Z.-T. Liu. Effect of vacancies on structural, electronic and optical properties of monolayer MoS2: a first-principles study. J. Alloys Compd., 2014, 613: 122-127.

[36] J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X. W. Lou, Y. Xie. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater., 2013, 25: 5807-5813.

[37] A. Veamatahau, B. Jiang, T. Seifert, S. Makuta, K. Latham, M. Kanehara, T. Teranishi, Y. Tachibana. Origin of surface trap states in CdS quantum dots: relationship between size dependent photoluminescence and sulfur vacancy trap states. Phys. Chem. Chem. Phys., 2015, 17: 2850-2858.

[38] G. Ye, Y. Gong, J. Lin, B. Li, Y. He, S. T. Pantelides, W. Zhou, R. Vajtai, P. M. Ajayan. Defects engineered monolayer MoS2 for improved hydrogen evolution reaction. Nano Lett., 2016, 16: 1097-1103.

[39] X. Hong, J. Kim, S. F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, F. Wang. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol., 2014, 9: 682-686.

[40] P. Kumar, M. Singh, G. B. Reddy. Oxidized core-shell MoO2–MoS2 nanostructured thin films for hydrogen evolution. ACS Appl. Nano Mater., 2019, 3: 711-723.

[41] S. Mignuzzi, A. J. Pollard, N. Bonini, B. Brennan, I. S. Gilmore, M. A. Pimenta, D. Richards, D. Roy. Effect of disorder on Raman scattering of single-layer MoS2. Phys. Rev. B, 2015, 91: 195411.

[42] M. He, C. Quan, C. He, Y. Huang, L. Zhu, Z. Yao, S. Zhang, J. Bai, X. Xu. Enhanced nonlinear saturable absorption of MoS2/graphene nanocomposite films. J. Phys. Chem. C, 2017, 121: 27147-27153.

[43] Q. Ouyang, H. Yu, K. Zhang, Y. Chen. Saturable absorption and the changeover from saturable absorption to reverse saturable absorption of MoS2 nanoflake array films. J. Mater. Chem. C, 2014, 2: 6319-6325.

[44] L. Wang, S. Zhang, N. McEvoy, Y. Y. Sun, J. Huang, Y. Xie, N. Dong, X. Zhang, I. M. Kislyakov, J. M. Nunzi, L. Zhang, J. Wang. Nonlinear optical signatures of the transition from semiconductor to semimetal in PtSe2. Laser Photon. Rev., 2019, 13: 1900052.

[45] K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, W. J. Blau. Ultrafast saturable absorption of two-dimensional MoS2 nanosheets. ACS Nano, 2013, 7: 9260-9267.

[46] X. Xu, M. He, C. Quan, R. Wang, C. Liu, Q. Zhao, Y. Zhou, J. Bai, X. Xu. Saturable absorption properties of ReS2 films and mode-locking application based on double-covered ReS2 micro fiber. J. Lightwave Technol., 2018, 36: 5130-5136.

[47] B. M. Szydłowska, B. Tywoniuk, W. J. Blau. Size-dependent nonlinear optical response of black phosphorus liquid phase exfoliated nanosheets in nanosecond regime. ACS Photon., 2018, 5: 3608-3612.

[48] G.-H. Jung, S. Yoo, Q. H. Park. Measuring the optical permittivity of two-dimensional materials without a priori knowledge of electronic transitions. Nanophotonics, 2018, 8: 263-270.

[49] M. Zawadzka, J. Wang, W. J. Blau, M. O. Senge. Modeling of nonlinear absorption of 5, 10-A2B2 porphyrins in the nanosecond regime. J. Phys. Chem. A, 2013, 117: 15-26.

[50] Q. Zhao, Y. Guo, Y. Zhou, Z. Yao, Z. Ren, J. Bai, X. Xu. Band alignments and heterostructures of monolayer transition metal trichalcogenides MX3 (M = Zr, Hf; X = S, Se) and dichalcogenides MX2 (M = Tc, Re; X=S, Se) for solar applications. Nanoscale, 2018, 10: 3547-3555.

[51] J. D. Fuhr, A. Saul, J. O. Sofo. Scanning tunneling microscopy chemical signature of point defects on the MoS2 (0001) surface. Phys. Rev. Lett., 2004, 92: 026802.

[52] W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, J. C. Idrobo. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett., 2013, 13: 2615-2622.

[53] M. Pandey, F. A. Rasmussen, K. Kuhar, T. Olsen, K. W. Jacobsen, K. S. Thygesen. Defect-tolerant monolayer transition metal dichalcogenides. Nano Lett., 2016, 16: 2234-2239.

[54] X. Zhang, S. Zhang, Y. Xie, J. Huang, L. Wang, Y. Cui, J. Wang. Tailoring the nonlinear optical performance of two-dimensional MoS2 nanofilms via defect engineering. Nanoscale, 2018, 10: 17924-17932.

[55] B. Anand, S. R. Krishnan, R. Podila, S. S. Sai, A. M. Rao, R. Philip. The role of defects in the nonlinear optical absorption behavior of carbon and ZnO nanostructures. Phys. Chem. Chem. Phys., 2014, 16: 8168-8177.

[56] C. Quan, C. Lu, C. He, X. Xu, Y. Huang, Q. Zhao, X. Xu. Band alignment of MoTe2/MoS2 nanocomposite films for enhanced nonlinear optical performance. Adv. Mater. Interfaces, 2019, 6: 1801733.

[57] N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, S. Couris. Nonlinear optical properties and broadband optical power limiting action of graphene oxide colloids. J. Phys. Chem. C, 2013, 117: 6842-6850.

Chunhui Lu, Hongwen Xuan, Yixuan Zhou, Xinlong Xu, Qiyi Zhao, Jintao Bai. Saturable and reverse saturable absorption in molybdenum disulfide dispersion and film by defect engineering[J]. Photonics Research, 2020, 8(9): 09001512.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!