Photonics Research, 2018, 6 (5): 05000468, Published Online: Jul. 6, 2018  

Integrated heterogeneous silicon/III–V mode-locked lasers Download: 640次

Author Affiliations
Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106, USA
Copy Citation Text

Michael L. Davenport, Songtao Liu, John E. Bowers. Integrated heterogeneous silicon/III–V mode-locked lasers[J]. Photonics Research, 2018, 6(5): 05000468.

References

[1] DausingerF.NolteS., Femtosecond Technology for Technical and Medical Applications, Vol. 96 of Topics in Applied Physics (Springer, 2004).

[2] J. L. Hall. Optical frequency measurement: 40 years of technology revolutions. IEEE J. Sel. Top. Quantum Electron., 2000, 6: 1136-1144.

[3] W. Coddington, I. Newbury, N. Swann. Dual-comb spectroscopy. Optica, 2016, 3: 414-426.

[4] P. T. Callahan, M. L. Dennis, T. R. Clark. Photonic analog-to-digital conversion. Johns Hopkins APL Tech. Dig., 2012, 30: 280-286.

[5] P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, A. Bogoni. A fully photonics-based coherent radar system. Nature, 2014, 507: 341-345.

[6] U. Keller, A. C. Tropper. Passively modelocked surface-emitting semiconductor lasers. Phys. Rep., 2006, 429: 67-120.

[7] W. Jiang, M. Shimizu, R. P. Mirin, T. E. Reynolds, J. E. Bowers. Electrically pumped mode-locked vertical-cavity semiconductor lasers. Opt. Lett., 1993, 18: 1937-1939.

[8] M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, D. Robbins. An introduction to InP-based generic integration technology. Semicond. Sci. Technol., 2014, 29: 83001.

[9] T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, C. Zhang, J. E. Bowers. Heterogeneous silicon photonic integrated circuits. J. Lightwave Technol., 2015, 34: 20-35.

[10] A. Bhardwaj, M. Larson, M. Moewe, Y. Feng. Low-loss InGaAsP/InP surface ridge waveguides for photonic integrated circuits. IEEE Photon. Technol. Lett., 2016, 28: 1403-1405.

[11] A. Biberman, M. J. Shaw, E. Timurdogan, J. B. Wright, M. R. Watts. Ultralow-loss silicon ring resonators. Opt. Lett., 2012, 37: 39-41.

[12] R. P. Green, M. Haji, L. Hou, G. Mezosi, R. Dylewicz, A. E. Kelly. Fast saturable absorption and 10  GHz wavelength conversion in Al-quaternary multiple quantum wells. Opt. Express, 2011, 19: 9737-9743.

[13] D. P. Sapkota, M. S. Kayastha, K. Wakita. Analysis of linewidth enhancement factor for compressively strained AlGaInAs and InGaAsP quantum well lasers. Opt. Quantum Electron., 2013, 45: 35-43.

[14] J. E. Bowers, P. A. Morton, A. Mar, S. W. Corzine. Actively mode-locked semiconductor lasers. IEEE J. Quantum Electron., 1989, 25: 1426-1439.

[15] D. J. Derickson, R. J. Helkey, A. Mar, J. R. Karin, J. G. Wasserbauer, J. E. Bowers. Short pulse generation using multisegment mode-locked semiconductor lasers. IEEE J. Quantum Electron., 1992, 28: 2186-2202.

[16] HouL.HajiM.MarshJ. H.BryceA. C., “10  GHz AlGaInAs/InP 1.55  μm passively mode-locked laser with low divergence angle and timing jitter,” in Conference on Lasers and Electro-Optics (CLEO) (2011), paper Mo.1.LeSaleve.2.

[17] Z. G. Lu, J. R. Liu, S. Raymond, P. J. Poole, P. J. Barrios, D. Poitras. 312-fs pulse generation from a passive C-band InAs/InP quantum dot mode-locked laser. Opt. Express, 2008, 16: 10835-10840.

[18] M. Dontabactouny, C. Rosenberg, E. Semenova, D. Larsson, K. Yvind, R. Piron, F. Grillot, O. Dehaese, N. Chevalier, S. Loualiche. 10-GHz 1.59-μm quantum dash passively mode-locked two-section lasers. Proc. SPIE, 2010, 7720: 77201A.

[19] L. Hou, M. Haji, J. H. Marsh, A. C. Bryce. 490  fs pulse generation from a passive C-band AlGaInAs/InP quantum well mode-locked laser. Opt. Lett., 2012, 37: 773-775.

[20] L. Hou, M. Haji, J. Akbar, B. Qiu, A. C. Bryce. Low divergence angle and low jitter 40  GHz AlGaInAs/InP 1.55  μm mode-locked lasers. Opt. Lett., 2011, 36: 966-968.

[21] C. Ji, N. Chubun, R. G. Broeke, J. Cao, Y. Du, S. J. B. Yoo, K. Y. Liou, J. R. Lothian, S. Vatanapradit, S. N. G. Chu, B. Patel, W. S. Hobson, W. T. Tsang. Synchronized transform-limited operation of 10-GHz colliding pulse mode-locked laser. IEEE Photon. Technol. Lett., 2006, 18: 625-627.

[22] J. F. Martins-Filho, E. A. Avrutin, C. N. Ironside, J. S. Roberts. Monolithic multiple colliding pulse mode-locked quantum-well lasers: experiment and theory. IEEE J. Sel. Top. Quantum Electron., 1995, 1: 539-551.

[23] J. Akbar, L. Hou, M. Haji, M. J. Strain, J. H. Marsh, A. C. Bryce, A. E. Kelly. High power (130  mW) 40  GHz 1.55  μm mode-locked distributed Bragg reflector lasers with integrated optical amplifiers. Opt. Lett., 2012, 37: 344-346.

[24] S. Keyvaninia, S. Uvin, M. Tassaert, Z. Wang, X. Fu, S. Latkowski, J. Marien, L. Thomassen, F. Lelarge, G. Duan, G. Lepage, P. Verheyen, J. Van Campenhout, E. Bente, G. Roelkens. III-V-on-silicon anti-colliding pulse-type mode-locked laser. Opt. Lett., 2015, 40: 3057-3060.

[25] L. Hou, M. Haji, J. Akbar, A. C. Bryce, J. H. Marsh. 160-GHz 1.55-um colliding-pulse mode-locked AlGaInAs/InP laser with high power and low divergence angle. IEEE Photon. Technol. Lett., 2012, 24: 1057-1059.

[26] L. Hou, M. Haji, J. H. Marsh. 240  GHz pedestal-free colliding-pulse mode-locked laser with a wide operation range. Laser Phys. Lett., 2014, 11: 115804.

[27] D. Larsson, K. Yvind, J. M. Hvam. Wide-band residual phase-noise measurements on 40-GHz monolithic mode-locked lasers. IEEE Photon. Technol. Lett., 2005, 17: 2388-2390.

[28] M. J. R. Heck, A. Renault, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, K. S. E. Eikema, W. Ubachs, S. Anantathanasarn, R. Notzel. Passively mode-locked 4.6 and 10.5  GHz quantum dot laser diodes around 1.55  um with large operating regime. IEEE J. Sel. Top. Quantum Electron., 2009, 15: 634-643.

[29] K. Merghem, A. Akrout, A. Martinez, G. Moreau, J.-P. Tourrenc, F. Lelarge, F. Van Dijk, G. Duan, G. Aubin, A. Ramdane. Short pulse generation using a passively mode locked single InGaAsP/InP quantum well laser. Opt. Express, 2008, 16: 10675-10683.

[30] R. Scollo, H.-J. Lohe, F. Robin, D. Erni, E. Gini, H. Jackel. Mode-locked InP-based laser diode with a monolithic integrated UTC absorber for subpicosecond pulse generation. IEEE J. Quantum Electron., 2009, 45: 322-335.

[31] J. H. Marsh, F. Camacho, E. A. Avrutin, A. C. Bryce. Passive modelocking in semiconductor lasers with monolithically integrated passive waveguides. IEEE Proc. J. Optoelectron., 1998, 145: 43-46.

[32] P. B. Hansen, G. Raybon, U. Koren, B. I. Miller, M. G. Young, M. A. Newkirk, M.-D. Chien, B. Tell, C. A. Burrus. 2  cm long monolithic multisection laser for active modelocking at 2.2  GHz. Electron. Lett., 1993, 29: 739-741.

[33] P. B. Hansen, G. Raybon, U. Koren, P. P. Iannone, B. I. Miller, G. M. Young, M. A. Newkirk, C. A. Burrus. InGaAsP monolithic extended-cavity lasers with integrated saturable absorbers for active, passive, and hybrid mode locking at 8.6  GHz. Appl. Phys. Lett., 1993, 62: 1445-1447.

[34] L. Hou, M. Haji, B. Qiu, A. C. Bryce. Mode-locked laser array monolithically integrated with MMI combiner, SOA, and EA modulator. IEEE Photon. Technol. Lett., 2011, 23: 1064-1066.

[35] H. Fan, C. Wu, M. El-Aasser, N. K. Dutta, U. Koren, A. B. Piccirilli. Colliding pulse mode-locked laser. IEEE Photon. Technol. Lett., 2000, 12: 972-973.

[36] M. S. Tahvili, Y. Barbarin, X. J. M. Leijtens, T. de Vries, E. Smalbrugge, J. Bolk, H. P. M. M. Ambrosius, M. K. Smit, E. A. J. M. Bente. Directional control of optical power in integrated InP/InGaAsP extended cavity mode-locked ring lasers. Opt. Lett., 2011, 36: 2462-2464.

[37] S. Joshi, C. Calò, N. Chimot, M. Radziunas, R. Arkhipov, S. Barbet, A. Accard, A. Ramdane, F. Lelarge. Quantum dash based single section mode locked lasers for photonic integrated circuits. Opt. Express, 2014, 22: 11254-11266.

[38] JoshiS.ChimotN.RosalesR.BarbetS.AccardA.RamdaneA.LelargeF., “Mode locked InAs/InP quantum dash based DBR laser monolithically integrated with a semiconductor optical amplifier,” in International Conference on Indium Phosphide and Related Materials (IPRM) (2013).

[39] L. Hou, M. Haji, J. H. Marsh. Monolithic mode-locked laser with an integrated optical amplifier for low-noise and high-power operation. IEEE J. Sel. Top. Quantum Electron., 2013, 19: 1100808.

[40] A. W. Fang, B. R. Koch, K.-G. Gan, H. Park, R. Jones, O. Cohen, M. J. Paniccia, D. J. Blumenthal, J. E. Bowers. A racetrack mode-locked silicon evanescent laser. Opt. Express, 2008, 16: 1393-1398.

[41] S. Srinivasan, A. Arrighi, M. J. R. Heck, J. Hutchinson, E. Norberg, G. Fish, J. E. Bowers. Harmonically mode-locked hybrid silicon laser with intra-cavity filter to suppress supermode noise. IEEE J. Sel. Top. Quantum Electron., 2014, 20: 8-15.

[42] B. R. Koch, A. W. Fang, O. Cohen, J. E. Bowers. Mode-locked silicon evanescent lasers. Opt. Express, 2007, 15: 11225-11233.

[43] S. Srinivasan, E. Norberg, T. Komljenovic, M. Davenport, G. Fish, J. E. Bowers. Hybrid silicon colliding-pulse mode-locked lasers with on-chip stabilization. IEEE J. Sel. Top. Quantum Electron., 2015, 21: 24-29.

[44] S. Keyvaninia, S. Uvin, M. Tassaert, X. Fu, S. Latkowski, J. Mariën, L. Thomassen, F. Lelarge, G. Duan, P. Verheyen, G. Lepage, J. Van Campenhout, E. Bente, G. Roelkens. Narrow-linewidth short-pulse III-V-on-silicon mode-locked lasers based on a linear and ring cavity geometry. Opt. Express, 2015, 23: 3221-3229.

[45] Y. Barbarin, E. A. J. M. Bente, M. J. R. Heck, Y. S. Oei, R. Nötzel, M. K. Smit. Characterization of a 15  GHz integrated bulk InGaAsP passively modelocked ring laser at 1.53 μm. Opt. Express, 2006, 14: 9716-9727.

[46] V. Moskalenko, S. Latkowski, S. Tahvili, T. de Vries, M. Smit, E. Bente. Record bandwidth and sub-picosecond pulses from a monolithically integrated mode-locked quantum well ring laser. Opt. Express, 2014, 22: 28865-28874.

[47] S. Arahira, Y. Katoh, Y. Ogawa. 20  GHz subpicosecond monolithic modelocked laser diode. Electron. Lett., 2000, 36: 454-456.

[48] R. Kaiser, B. Huttl, H. Heidrich, S. Fidorra, W. Rehbein, H. Stolpe, R. Stenzel, W. Ebert, G. Sahin. Tunable monolithic mode-locked lasers on InP with low timing jitter. IEEE Photon. Technol. Lett., 2003, 15: 634-636.

[49] K. Sato, I. Kotaka, Y. Kondo, M. Yamamoto. Actively mode-locked strained-InGaAsP multiquantum-well lasers integrated with electroabsorption modulators and distributed Bragg reflectors. IEEE J. Sel. Top. Quantum Electron., 1996, 2: 557-565.

[50] S. Arahira, Y. Matsui, T. Kunii, S. Oshiba, Y. Ogawa. Transform-limited optical short-pulse generation at high repetition rate over 40  GHz from a monolithic passive mode-locked DBR laser diode. IEEE Photon. Technol. Lett., 1993, 5: 1362-1365.

[51] J. J. Plant, J. T. Gopinath, B. Chann, D. J. Ripin, R. K. Huang, P. W. Juodawlkis. 250  mW, 1.5  m monolithic passively mode-locked slab-coupled optical waveguide laser. Opt. Lett., 2006, 31: 223-225.

[52] ParkerJ. S.BhardwajA.BinettiP. R. A.HungY.LinC. H.ColdrenL. A., “Integrated 30  GHz passive ring mode-locked laser with gain flattening filter,” in IEEE International Semiconductor Laser Conference (ISLC) (2010), pp. 34.

[53] Z. Wang, K. Van Gasse, V. Moskalenko, S. Latkowski, E. Bente, B. Kuyken, G. Roelkens. A III-V-on-Si ultra-dense comb laser. Light Sci. Appl., 2017, 6: e16260.

[54] F. Kéfélian, S. O’Donoghue, M. T. Todaro, J. G. McInerney, G. Huyet. RF linewidth in monolithic passively mode-locked semiconductor laser. IEEE Photon. Technol. Lett., 2008, 20: 1405-1407.

[55] J. Minch, S. H.-H. Park, T. Keating, S. L.-L. Chuang. Theory and experiment of InGaAsP and InGaAlAs long-wavelength strained quantum-well lasers. IEEE J. Quantum Electron., 1999, 35: 771-782.

[56] M. L. Davenport, S. Skendzic, N. Volet, J. C. Hulme, M. J. R. Heck, J. E. Bowers. Heterogeneous silicon/III-V semiconductor optical amplifiers. IEEE J. Sel. Top. Quantum Electron., 2016, 22: 78-88.

[57] X. Sun, L. Zhou, J. Xie, Z. Zou, L. Lu, H. Zhu, X. Li, J. Chen. Tunable silicon Fabry–Perot comb filters formed by Sagnac loop mirrors. Opt. Lett., 2013, 38: 567-569.

[58] G. Fuchs, J. Hörer, A. Hangleiter, V. Härle, F. Scholz, R. W. Glew, L. Goldstein. Intervalence band absorption in strained and unstrained InGaAs multiple quantum well structures. Appl. Phys. Lett., 1992, 60: 231-233.

[59] L. F. Tiemeijer, P. J. A. Thijs, P. J. de Waard, J. J. M. Binsma, T. V. Dongen. Dependence of polarization, gain, linewidth enhancement factor, and K factor on the sign of the strain of InGaAs/InP strained-layer multiquantum well lasers. Appl. Phys. Lett., 1991, 58: 2738-2740.

[60] W. Bogaerts, S. K. Selvaraja. Compact single-mode silicon hybrid rib/strip waveguide with adiabatic bends. IEEE Photon. J., 2011, 3: 422-432.

[61] M. Piels, J. F. Bauters, M. L. Davenport, M. J. R. Heck, J. E. Bowers. Low-loss silicon nitride AWG demultiplexer heterogeneously integrated with hybrid III-V/silicon photodetectors. J. Lightwave Technol., 2014, 32: 817-823.

Michael L. Davenport, Songtao Liu, John E. Bowers. Integrated heterogeneous silicon/III–V mode-locked lasers[J]. Photonics Research, 2018, 6(5): 05000468.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!