Opto-Electronic Advances, 2019, 2 (4): 180022, Published Online: Apr. 28, 2019   

A review of crosstalk research for plasmonic waveguides

Author Affiliations
1 College of Information Engineering, Shenzhen University, Shenzhen 518000, China
2 University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen 518000, China
Copy Citation Text

Junxian Ma, Dezheng Zeng, Yatao Yang, Can Pan, Li Zhang, Haidong Xu. A review of crosstalk research for plasmonic waveguides[J]. Opto-Electronic Advances, 2019, 2(4): 180022.

References

[1] D K Gramotnev, S I Bozhevolnyi. Plasmonics beyond the diffraction limit. Nat Photonics, 2010, 4: 83-91.

[2] E Ozbay. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science, 2006, 311: 189-193.

[3] DokaniaR KApselA BAnalysis of challenges for on-chip optical interconnects. In Proceedings of the 19th ACM Great Lakes Symposium on VLSI 275-280 (ACM, 2009)

[4] D A B Miller. Device requirements for optical interconnects to silicon chips. Proc IEEE, 2009, 97: 1166-1185.

[5] M Piliarik, J Homola. Surface plasmon resonance (SPR) sensors: approaching their limits?. Opt Express, 2009, 17: 16505-16517.

[6] S A Maier, P G Kik, H A Atwater, S Meltzer, E Harel, et al.. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat Mater, 2003, 2: 229-232.

[7] R Charbonneau, N Lahoud, G Mattiussi, P Berini. Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons. Opt Express, 2005, 13: 977-984.

[8] P Berini. Long-range surface plasmon polaritons. Adv Opt Photonics, 2009, 1: 484-588.

[9] B Steinberger, A Hohenau, H Ditlbacher, A L Stepanov, A Drezet, et al.. Dielectric stripes on gold as surface plasmon waveguides. Appl Phys Lett, 2006, 88: 094104.

[10] Z Chen, T Holmgaard, S I Bozhevolnyi, A V Krasavin, A V Zayats, et al.. Wavelength-selective directional coupling with dielectric-loaded plasmonic waveguides. Opt Lett, 2009, 34: 310-312.

[11] S I Bozhevolnyi, V S Volkov, E Devaux, J Y Laluet, T W Ebbesen. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature, 2006, 440: 508-511.

[12] V S Volkov, S I Bozhevolnyi, E Devaux, J Y Laluet, T W Ebbesen. Wavelength selective nanophotonic components utilizing channel plasmon polaritons. Nano Lett, 2007, 7: 880-884.

[13] D F P Pile, T Ogawa, D K Gramotnev, T Okamoto, M Haraguchi, et al.. Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding. Appl Phys Lett, 2005, 87: 061106.

[14] A Boltasseva, V S Volkov, R B Nielsen, E Moreno, S G Rodrigo, et al.. Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths. Opt Express, 2008, 16: 5252-5260.

[15] D K Gramotnev, K C Vernon, D F P Pile. Directional coupler using gap plasmon waveguides. Appl Phys B, 2008, 93: 99-106.

[16] K Tanaka, M Tanaka, T Sugiyama. Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides. Opt Express, 2005, 13: 256-266.

[17] G Veronis, S H Fan. Guided subwavelength plasmonic mode supported by a slot in a thin metal film. Opt Lett, 2005, 30: 3359-3361.

[18] R F Oulton, V J Sorger, D A Genov, D F P Pile, X Zhang. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat Photonics, 2008, 2: 496-500.

[19] D X Dai, S L He. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Opt Express, 2009, 17: 16646-16653.

[20] M Fujii, J Leuthold, W Freude. Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides. IEEE Photonics Technol Lett, 2009, 21: 362-364.

[21] R Zia, M D Selker, P B Catrysse, M L Brongersma. Geometries and materials for subwavelength surface plasmon modes. J Opt Soc Am A, 2004, 21: 2442-2446.

[22] L Liu, Z H Han, S L He. Novel surface plasmon waveguide for high integration. Opt Express, 2005, 13: 6645-6650.

[23] G Veronis, S H Fan. Crosstalk between three-dimensional plasmonic slot waveguides. Opt Express, 2008, 16: 2129-2140.

[24] Y S Bian, Z Zheng, X Zhao, J S Zhu, T Zhou. Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration. Opt Express, 2009, 17: 21320-21325.

[25] Y Song, M Yan, Q Yang, L M Tong, M Qiu. Reducing crosstalk between nanowire-based hybrid plasmonic waveguides. Opt Commun, 2011, 284: 480-484.

[26] J Xiao, J S Liu, Z Zheng, Y S Bian, G J Wang, et al.. Low-loss metal-insulator-semiconductor waveguide with an air core for on-chip integration. Opt Commun, 2012, 285: 3604-3607.

[27] E Devaux, S I Bozhevolnyi, T W Ebbesen, V S Volkov, V A Zenin, et al.. Directional coupling in channel plasmon-polariton waveguides. Opt Express, 2012, 20: 6124-6134.

[28] Z H Han, S I Bozhevolnyi. Radiation guiding with surface plasmon polaritons. Rep Prog Phys, 2013, 76: 016402.

[29] C C Huang. Ultra-long-range symmetric plasmonic waveguide for high-density and compact photonic devices. Opt Express, 2013, 21: 29544-29557.

[30] R K S Shruti, R Bhattacharyya. Coupling and crosstalk characteristics of hybrid silicon plasmonic waveguides. Appl Phys B, 2014, 116: 241-248.

[31] L Chen, T Zhang, W Hong, X Zhou, X Li. A graphene-based hybrid plasmonic waveguide with ultra-deep subwavelength confinement. Journal of Lightwave Technology, 2014, 32: 4199-4203.

[32] A N Ma, G J Li, Y E Li. Crosstalk and coupling analysis of wedge plasmon polariton waveguides by the improved coupled mode theory. J Nanoelectron Optoelectron, 2015, 10: 828-832.

[33] KuznetsovE VMerzlikinA MZyablovskyA AVinogradovA PLisyanskyA ASuppression of crosstalk in coupled plasmonic waveguides. arXiv: 1611.08214 [physics.optics] (2016)

[34] X Q He, T G Ning, S H Lu, J J Zheng, J Li, et al.. Ultralow loss graphene-based hybrid plasmonic waveguide with deep-subwavelength confinement. Opt Express, 2018, 26: 10109-10118.

[35] T Holmgaard, Z Chen, S I Bozhevolnyi, L Markey, A Dereux. Design and characterization of dielectric-loaded plasmonic directional couplers. J Lightw Technol, 2009, 27: 5521-5528.

[36] M S Kwon. Metal-insulator-silicon-insulator-metal waveguides compatible with standard CMOS technology. Opt Express, 2011, 19: 8379-8393.

[37] Y S Bian, Q H Gong. Optical performance of one-dimensional hybrid metal-insulator-metal structures at telecom wavelength. Opt Commun, 2013, 308: 30-35.

[38] Y S Bian, Z Zheng, X Zhao, L Liu, Y L Su, et al.. Dielectrics covered metal nanowires and nanotubes for low-loss guiding of subwavelength plasmonic modes. J Lightw Technol, 2013, 31: 1973-1979.

[39] R Hao, E Cassan, Y Xu, M Qiu, X C Wei, et al.. Reconfigurable parallel plasmonic transmission lines with nanometer light localization and long propagation distance. IEEE J Sel Top Quantum Electron, 2013, 19: 4601809.

[40] HaoRPengX LChenH SYinW YLiE PPlasmonic transmission lines with zero crosstalk. In Proceedings of 2016 Asia-Pacific International Symposium on Electromagnetic Compatibility 1021-1023 (IEEE, 2016)

[41] A Dolatabady, N Granpayeh. Plasmonic directional couplers based on multi-slit waveguides. Plasmonics, 2017, 12: 597-604.

[42] K Nakayama, Y Tonooka, M Ota, Y Ishii, M Fukuda. Passive plasmonic demultiplexers using multimode interference. J Lightw Technol, 2018, 36: 1979-1984.

[43] S Joshi, V Nehra, B K Kaushik. Modeling and simulation analysis of graphene integrated silicon waveguides. Proc SPIE, 2017, 10345: 1034518.

[44] M S Kwon, Y Kim. Theoretical investigation of intersections of metal-insulator-silicon-insulator-metal waveguides. IEEE Photonics J, 2016, 8: 2701510.

[45] J Liu, J Xiao, J Zhu, L Liu, T Zhou, et al.. Dielectrics covered metal nanowires and nanotubes for low-loss guiding of subwavelength plasmonic modes. Journal of Lightwave Technology, 2013, 31: 1973-1979.

[46] W Zhou, X G Huang. Long-range air-hole assisted subwavelength waveguides. Nanotechnology, 2013, 24: 235203.

[47] W F Jiang, F Y Cheng, J Xu, H D Wan. Compact and low-crosstalk mode (de)multiplexer using a triple plasmonic-dielectric waveguide-based directional coupler. J Opt Soc Am B, 2018, 35: 2532-2540.

[48] J Cui, Y Sun, L Wang, P J Ma. Graphene plasmonic waveguide based on a high-index dielectric wedge for compact photonic integration. Optik, 2016, 127: 152-155.

[49] M Mrejen, H Suchowski, T Hatakeyama, C H Wu, L Feng, et al.. Adiabatic elimination-based coupling control in densely packed subwavelength waveguides. Nat Commun, 2015, 6: 7565.

Junxian Ma, Dezheng Zeng, Yatao Yang, Can Pan, Li Zhang, Haidong Xu. A review of crosstalk research for plasmonic waveguides[J]. Opto-Electronic Advances, 2019, 2(4): 180022.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!