光学学报, 2020, 40 (1): 0111008, 网络出版: 2020-01-06   

基于数字全息术的近场成像与应用 下载: 2942次特邀综述

Digital Holography Based Near-field Imaging and Its Application
戴思清 1,2,3豆嘉真 1,2,3张继巍 1,2,3邸江磊 1,2,3,*赵建林 1,2,3,**
作者单位
1 西北工业大学物理科学与技术学院, 陕西 西安 710129
2 陕西省光信息技术重点实验室, 陕西 西安 710072
3 超常条件材料物理与化学教育部重点实验室, 陕西 西安 710072
图 & 表

图 1. 直角棱镜-电介质界面处的全反射

Fig. 1. TIR on the interface of rectangular prism anddielectric layer

下载图片 查看原文

图 2. TIR相移φ随电介质折射率n2变化的理论曲线

Fig. 2. Theoretical curves of TIR phase shift φ varying with dielectric refractive index n2

下载图片 查看原文

图 3. 基于马赫-曾德尔干涉仪的TIR数字全息测量光路[72]

Fig. 3. Experimental setup for TIR digital holography based on Mach-Zehnder interferometer[72]

下载图片 查看原文

图 4. 不同质量分数的甘油-水混合溶液引起的反射光波的相位差分布实验测量结果[72]。(a) 40%;(b) 60%;(c) 75%

Fig. 4. Experimental results of phase difference distribution of reflected light wave induced by glycerol-water mixtures with different mass fractions[72]. (a) 40%; (b) 60%; (c) 75%

下载图片 查看原文

图 5. 透射-TIR集成式DHM实验系统[73]

Fig. 5. Experimental setup for transmission-TIR integrated DHM [73]

下载图片 查看原文

图 6. 具有不同折射率和几何厚度的液滴阵列的实验测量结果[73]。(a)二维和(b)一维折射率分布;(c)三维和(d)一维几何厚度分布

Fig. 6. Experimental results of droplet array with different refractive indexes and geometrical thicknesses[73]. (a) Two-dimensional and (b) one-dimensional profiles of refractive index; (c) three-dimensional and (d) one-dimensional profiles of geometrical thickness

下载图片 查看原文

图 7. 激发SPR的Kretschmann结构

Fig. 7. Kretschmann configuration for SPR excitation

下载图片 查看原文

图 8. SPR过程中反射光波的强度和相移随介质折射率变化的理论曲线

Fig. 8. Theoretical curves of intensity and phase shift of reflected light wave varying with dielectric refractive index during SPR

下载图片 查看原文

图 9. 电介质折射率n3随反射相移差Δφ的变化[75]

Fig. 9. Refractive index of dielectric n3 versus reflection phase shift difference Δφ [75]

下载图片 查看原文

图 10. 共路型SPRHM实验系统[75]

Fig. 10. Experimental setup for common-path SPRHM[75]

下载图片 查看原文

图 11. 乙醇-水混合溶液测量结果[75]。(a)反射相移差随时间的变化;(b)折射率随时间的微小变化

Fig. 11. Experiment results of alcohol-water mixture[75]. (a) Reflection phase shift difference versus time; (b) tiny variation of refractive index with time

下载图片 查看原文

图 12. 632.8 nm和660 nm激发波长下反射相移差Δφ随介质折射率n3的变化关系[76]

Fig. 12. Reflection phase shift difference Δφ versus dielectric refractive index n3 at wavelengths of 632.8 nm and 660 nm[76]

下载图片 查看原文

图 13. 乙醇-水混合溶液挥发过程中其对660 nm光波的折射率的微小变化[76]。(a)直接对660 nm光波进行测量的结果;(b)由632.8 nm光波的测量值换算到660 nm光波的折射率

Fig. 13. Tiny variation of refractive index of alcohol-water mixture for 660 nm light wave during volatilization process[76]. (a) Result of direct measurement for 660 nm light wave; (b) refractive index of 660 nm light wave converted from measured value of 632.8 nm light wave

下载图片 查看原文

图 14. 利用单波长SPRHM实验系统得到的洋葱组织相位图像[75]。(a)数字全息图;(b)重建的相位图像

Fig. 14. Phase image of onion tissue obtained by single-wavelength SPRHM experimental setup[75]. (a) Digital hologram; (b) reconstructed phase image

下载图片 查看原文

图 15. 利用双波长SPRHM实验系统得到的洋葱组织相位图像[76]。(a)数字全息图;(b)激发波长为660 nm时的相位图像;(c)激发波长为632.8 nm时的相位图像

Fig. 15. Phase images of onion tissue obtained by two-wavelength SPRHM experimental setup[76]. (a) Digital holograms; (b) phase images at the wavelength of 660 nm; (c) phase images at the wavelength of 632.8 nm

下载图片 查看原文

图 16. 不同待测介质对应的反射相移差Δφ随电介质折射率n5变化的理论曲线[80]。(a)实部n4不同;(b)虚部k4不同

Fig. 16. Theoretical curves of reflection phase shift difference Δφ corresponding to different tested films versus refractive index of dielectric layer n580

下载图片 查看原文

图 17. 不同层数石墨烯薄膜对应的反射相移差测量结果和最小二乘拟合曲线[80]

Fig. 17. Measurement results and least-square fitting curves of the reflection phase shift difference for graphene films with different numbers of layers[80]

下载图片 查看原文

图 18. 集成棱镜耦合SPRHM与反射式DHM的实验光路[81]

Fig. 18. Experimental optical paths of integrated prism coupling SPRHM and reflection-type DHM[81]

下载图片 查看原文

图 19. 乙醇-水混合溶液(初始体积比为1∶2)挥发过程的测量结果[81]。(a) Δ?1随时间的变化;(b) Δ?2随时间的变化;(c) n3随时间的变化;(d) hmax随时间的变化

Fig. 19. Measurement results of volatilization process of alcohol-water mixture with initial volume ratio of 1∶2[81]. (a) Δ?1 versus time; (b) Δ?2 versus time; (c) n3 versus time; (d) hmax versus time

下载图片 查看原文

图 20. 物镜耦合的SPR激发装置

Fig. 20. SPR excitation configuration with objective coupling

下载图片 查看原文

图 21. 基于共路干涉仪的物镜耦合SPRHM实验系统[82]

Fig. 21. Objective-coupling SPRHM experimental setup based on common-path interferometer[82]

下载图片 查看原文

图 22. ZnO薄膜样品的实验测量结果[82]。(a)强度反射率;(b)反射相移差;(c)三维厚度分布;(d)一维厚度分布

Fig. 22. Experimental measurement results of ZnO thin film[82]. (a) Intensity reflectivity; (b) reflection phase shift difference; (c) 3D thickness distribution; (d) 1D thickness distribution

下载图片 查看原文

图 23. 基于Sb2Te3拓扑绝缘体的SPR数字全息共路干涉仪[83]

Fig. 23. SPR digital holographic common-path interferometer based on Sb2Te3 topological insulator[83]

下载图片 查看原文

图 24. 超纯水及乙醇-水混合溶液的实验测量结果[83]。(a)待测样品为超纯水时反射光波的强度反射率随入射角的变化;(b)待测样品为乙醇-水溶液时反射光波的强度反射率和相位随时间的变化;(c)~(e)液滴在不同时刻的全息图、重建的相位图和强度图

Fig. 24. Experimental measurement results of ultrapure water and ethanol-water mixture[83]. (a) Reflectivity of reflected light versus incident angle when tested sample is ultrapure water; (b) reflectivity and phase of reflected light versus time when tested sample is ethanol-water mixture; (c)-(e) holograms, reconstructed phase images, and intensity images at different time

下载图片 查看原文

表 1甘油-水混合溶液的折射率测量结果[72]

Table1. Measurement results of refractive index of glycerol-water mixtures[72]

Measured mixtureIndex /RIUDeviation of reflection phase shift difference /(°)Calculated index /RIUIndex deviation /RIU
40% glycerol-water1.384130.53291.385350.00122
60% glycerol-water1.412990.34951.413460.00047
75% glycerol-water1.435340.3381.435120.00022

查看原文

表 2石墨烯样品复折射率的测量结果[80]

Table2. Measured complex refractive indices of graphene specimens[80]

L123
Δϑ /rad1.561.170.35
n43.273.293.29
k40.600.580.55

查看原文

戴思清, 豆嘉真, 张继巍, 邸江磊, 赵建林. 基于数字全息术的近场成像与应用[J]. 光学学报, 2020, 40(1): 0111008. Siqing Dai, Jiazhen Dou, Jiwei Zhang, Jianglei Di, Jianlin Zhao. Digital Holography Based Near-field Imaging and Its Application[J]. Acta Optica Sinica, 2020, 40(1): 0111008.

本文已被 9 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!