中国激光, 2014, 41 (2): 0205003, 网络出版: 2014-01-16   

基于波分复用的长周期光纤光栅光化学多参量传感技术研究

Multi-Parameter Photochemical Sensing Technology of Long-Period Fiber Grating and Wavelength Division Multiplexing
陈海云 1,2,3,*顾铮天 3高侃 4
作者单位
1 上海理工大学光电信息与计算机工程学院, 上海 200093
2 浙江师范大学信息光学研究所, 浙江 金华 321004
3 上海理工大学理学院光电功能薄膜实验室, 上海 200093
4 中国电子科技集团第二十三研究所, 上海 201900
摘要
提出一种基于波分复用(WDM)的长周期光纤光栅(LPFG)光化学多参量传感技术。利用均匀LPFG相邻级次包层模耦合谐振峰间的波长间隔,通过设计不同传感单元LPFG的光栅周期,进一步通过包层腐蚀或镀膜调整各LPFG特征峰位置,使各LPFG的特征峰在观察波长范围内相互错位。前一个LPFG激发的包层模不能传输到下一个LPFG,不同参量变化引起的各LPFG特征峰移动相互独立,通过考察系统输出复合谱中各特征峰的偏移可得各参量值。实验中利用镀聚炳烯胺盐酸盐/聚丙烯酸(PAH/PAA)薄膜LPFG、薄包层LPFG和镀TiO2/SnO2复合薄膜LPFG组成多参量传感系统,实现了对pH值、NaCl溶液浓度和相对湿度(RH)三个参量的传感。基于WDM的LPFG光化学多参量传感原理与结构简单,各LPFG的结构设计可独立进行,适用于对多个光化学环境参量的分布式测量。
Abstract
A multi-parameter photochemical sensing technology of long-period fiber gratings (LPFGs) based on wavelength division multiplexing (WDM) is put forward. Utilizing the wide wavelength space between two resonance peaks corresponding to two neighboring cladding modes of a uniform LPFG, the characteristic peaks of respective sensing units in the multi-parameter sensing system are tuned to distribute in the wavelength space discretely by designing grating periods of different sensor units of LPFG, eroding cladding or depositing films on cladding. There is no cladding modes interference between LPFGs and the peak shifts induced by the variations of corresponding parameters are independent, and finally the respective parameters are obtained by directly interrogating the corresponding characteristic peaks. In the experiment, a multi-parameter photochemical sensing system consisting of LPFG coated with polypropylene amine hydrochloride/polyacrylic acid (PAH/PAA) film, thin cladding LPFG and LPFG coated with TiO2/SnO2 composite film is set up, which can perform the measurements of pH value, concentration of NaCl solution and relative humidity (RH), respectively. The sensing mechanism and system structure of this WDM-based LPFG multi-parameter photochemical sensing technology are simple and the design of respective sensing units can be carried out independently, which enables this technology to be applied in the distributed sensing of multiple environmental parameters.
参考文献

[1] 王洁玉, 童峥嵘, 杨秀峰, 等. 基于多模干涉和长周期光纤光栅的温度及折射率同时测量[J]. 中国激光, 2012, 39(9): 0905003.

    Wang Jieyu, Tong Zhengrong, Yang Xiufeng, et al.. Simultaneous measurement of temperature and refraction index based on multimode interference and long-period fiber grating[J]. Chinese J Lasers, 2012, 39(9): 0905003.

[2] 顾铮天, 张江涛. 基于双峰谐振效应的镀金属长周期光纤光栅液体浓度传感器[J]. 光学学报, 2011, 31(3): 0305003.

    Gu Zhengtian, Zhang Jiangtao. Metal-coated long-period fiber grating liquid sensor based on dual-peak resonance[J]. Acta Optica Sinica, 2011, 31(3): 0305003.

[3] N D Rees, S W James, R P Tatam, et al.. Optical fiber long-period gratings with Langmuir-Blodgett thin-film overlays[J]. Opt Lett, 2002, 27(9): 686-688.

[4] 于秀娟, 张敏, 王利威, 等. 镀高折射率纳米膜的长周期光纤光栅特性研究[J]. 光学学报, 2009, 29(10): 2665-2672.

    Yu Xiujuan, Zhang Min, Wang Liwei, et al.. Characteristics of long-period optical fiber grating with high refractive index nm-thick film overlay[J]. Acta Optica Sinica, 2009, 29(10): 2665-2672.

[5] 顾铮天, 蓝锦龙. 镀膜吸收型膜长周期光纤光栅模式转换与折射率响应特性[J]. 光学学报, 2013, 33(7): 0707003.

    Gu Zhengtian, Lan Jinlong. Mode transition in absorption film coated long-period fiber grating and response characteristics of refractive index[J]. Acta Optica Sinica, 2013, 33(7): 0707003.

[6] 詹亚歌, 吴华, 许毓敏, 等. 多参量和多功能型光纤光栅传感技术[J]. 激光与光电子学进展, 2007, 44(9): 47-54.

    Zhan Yage, Wu Hua, Xu Yumin, et al.. Multi-parameter and multi-functional fiber grating sensing technology[J]. Laser & Optoelectronics Progress, 2007, 44(9): 47-54.

[7] V Bhatia, D Campbell, R O Claus, et al.. Simultaneous strain and temperature measurement with long-period gratings[J]. Opt Lett, 1997, 22(9): 648-650.

[8] 童峥嵘, 郭阳, 杨秀峰, 等. 基于Lyot滤波器和长周期光纤光栅的温度与应变的同时测量[J]. 中国激光, 2012, 39(3): 0305002.

    Tong Zhengrong, Guo Yang, Yang Xiufeng, et al.. Simultaneous measurement of temperature and strain based on a long-period fiber grating combined with a Lyot fiber filter in a linear configuration[J]. Chinese J Lasers, 2012, 39(3): 0305002.

[9] R P Murphy, S W James, R P Tatam. Multiplexing of fiber-optic long-period grating-based interferometric sensors[J]. J Lightwave Technol, 2007, 25(3): 825-829.

[10] H S Lin, M R Mokhtar, F A Rahman, et al.. Simultaneous spectra recovery of long-period grating sensor array using optical time-division multiplexing[J]. Optik, 2012, 123(7): 650-652.

[11] T Erdogan. Fiber grating spectra[J]. J Lightwave Technol, 1997, 15(8): 1277-1294.

[12] T Erdogan. Cladding-mode resonances in short-and long-period fiber grating filters[J]. J Opt Soc Am A, 1997, 14(8): 1760-1773.

[13] Shu X, Zhang L, Bennion L. Sensitivity characteristics near the dispersion turning points of long-period fiber gratings in B/Ge codoped fiber[J]. Opt Lett, 2001, 26(22): 1755-1757.

[14] X W Shu, D X Huang. Highly sensitive chemical sensor based on the measurement of the separation of dual resonant peaks in a 100-μm-period fiber grating[J]. Opt Commun, 1999, 171(1-3): 65-69.

[15] I D Villar, M Achaerandio, I R Matias, et al.. Deposition of overlays by electrostatic self-assembly in long-period fiber gratings[J]. Opt Lett, 2005, 30(7): 720-722.

[16] S S Shiratori, M F Rubner. pH-dependent thickness behavior of sequentially adsorbed layers of weak polyelectrolytes[J]. Macromolecules, 2000, 33(11): 4213-4219.

[17] J M Corres, Del VillarI, I R Matias, et al.. Fiber-optic pH-sensors in long-period fiber gratings using electrostatic self-assembly[J]. Opt Lett, 2007, 32(1): 29-31.

[18] 欧启标, 彭宇林, 曾庆科, 等. 薄膜厚度对镀膜长周期光纤光栅模式重组的影响[J]. 中国激光, 2012, 39(s2): s205001.

    Ou Qibiao, Peng Yulin, Zeng Qingke, et al.. Impact of film thickness on modes reorganization of coated long period fiber grating[J]. Chinese J Lasers, 2012, 39(s2): s205001.

[19] S A Vasiliev, E M Dianov, D Varelas, et al.. Postfabrication resonance peak positioning of long-period cladding-mode-coupled gratings[J]. Opt Lett, 1996, 21(22): 1830-1832.

[20] H Y Chen, Z T Gu. Characteristics of a long-period fiber grating with reduced cladding for refractive index sensing[J]. J Mod Optic, 2011, 58(18): 1659-1665.

[21] Z M Shi, L Yan, L N Jin, et al.. The phase transformation behaviors of Sn2+-doped Titania gels[J]. J Non-Cryst Solids, 2007, 353(22): 2171-2178.

陈海云, 顾铮天, 高侃. 基于波分复用的长周期光纤光栅光化学多参量传感技术研究[J]. 中国激光, 2014, 41(2): 0205003. Chen Haiyun, Gu Zhengtian, Gao Kan. Multi-Parameter Photochemical Sensing Technology of Long-Period Fiber Grating and Wavelength Division Multiplexing[J]. Chinese Journal of Lasers, 2014, 41(2): 0205003.

本文已被 8 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!