强激光与粒子束, 2018, 30 (10): 101002, 网络出版: 2018-11-25   

DF化学激光器扩压器流场仿真及优化

Simulation and optimization of DF chemical lasers’ diffuser
作者单位
中国船舶重工集团公司 第七一八研究所, 河北 邯郸 056027
摘要
建立了DF化学激光器压力恢复系统扩压器的流场仿真模型, 对扩压器流场结构进行了仿真分析。结果显示, 扩压器超扩段长度为1310 mm时, 激光器可工作压力为7.18 kPa。增加超扩段长度至1810 mm, 激光器的可工作压力上升至8.25 kPa; 插入2片楔形叶片, 激光器的可工作压力提升至8.52 kPa。适当增加超扩段长度和插入叶片的方式可在一定范围内提高激光器的工作压力, 研究结果对于化学激光器扩压器的设计与优化具有重要的参考价值。
Abstract
The model of diffuser used on chemical laser’s pressure recovery system is built, the fluid field is simulated. The results show that when the supersonic part of the diffuser is 1310 mm long, the background pressure that the chemical laser can lase normally is 7.18 kPa. When the supersonoic length is 1810 mm, the diffuser’s recovery pressure rises to 8.25 kPa; when there are 2 vanes in the supersonic flow channel, the diffuser’s recovery pressure rises to 8.52 kPa. The lengthening of the diffuser can raise the pressure, but the losing of the total energy will induce the difficulty of the diffuser’s start-up. The use of vanes can raise the diffuser’s recovery pressure successfully, and the scale of the recovery system could be reduced at the same time.
参考文献

[1] 符澄, 彭强, 刘卫红等.光腔与扩压器化学反应流场优化数值模拟[J]. 强激光与粒子束, 2015, 27: 111009. (Fu Cheng, Peng Qiang, Liu Weihong, et al. Numerical simulation of chemical reaction flow optimization in cavity and diffuser. High Power Laser and Particle Beams, 2015, 27: 111009)

[2] 李烨, 范晓檣, 丁猛. 超声速扩压器中激波串结构的数值模拟[J]. 国防科技大学学报, 2002, 24(1): 18-21. (Li Ye, Fan Xiaoqiang, Ding Meng. Numerical simulation of the shock train structure in the supersonic diffuser. Journal of National University of Defense Technology, 2002, 24(1): 18-21)

[3] 余真, 李守先, 陈栋泉. 喷管、光腔及压力恢复系统一体化设计[J]. 强激光与粒子束, 2007, 19(4): 533-537. (Yu Zhen, Li Shouxian, Chen Dongquan. Integrative design of nozzle,cavity and pressure recovery system.High Power Laser and Particle Beams, 2007, 19(4): 533-537)

[4] 童华, 孙启志, 张绍武. 高超声速风洞扩压器试验研究与分析[J]. 实验流体力学, 2016, 28(3): 78-81. (Tong Hua, Sun Qizhi, Zhang Shaowu. Investigation and analyse on the diffuser of hypersonic and wind tunnel.Journal of Experiments in Fluid Mechanics, 2016, 28(3): 78-81)

[5] 符澄, 彭强, 刘卫红, 等. 光腔与扩压器的一体化优化数值模拟[J]. 强激光与粒子束, 2014, 26: 111003. (Fu Cheng, Peng Qiang, Liu Weihong, et al. Investigation optimization numerical simulation of some cavity diffuser. High Power Laser and Particle Beams, 2014, 26: 111003)

[6] 蔡光明, 刘军, 王永振, 等. 二次喉道扩压器对COIL的影响实验[J]. 强激光与粒子束, 2005, 17(12): 1807-1811. (Cai Guangming, Liu Jun, Wang Yongzhen, et al. Experimental study on influence of secondary-throat diffuser on COIL.High Power Laser and Particle Beams, 2005, 17(12): 1807-1811)

[7] 蔡光明, 刘军, 宋影松,等. 竖直隔板对COIL超扩段流场影响实验研究[J]. 强激光与粒子束, 2003, 15(8): 729-732. (Cai Guangming, Liu Jun, Song Yingsong, et al. Experimental research of the influence of the verical vane on the flow-field of COIL diffuser, High Power Laser and Particle Beams, 2003, 15(8): 729-732)

[8] 黄知龙, 张国彪, 耿子海,等. 氧碘化学激光器直线分段扩开型扩压器实验研究[J]. 强激光与粒子束, 2011, 23(5): 1211-1214. (Huang Zhilong, Zhang Guobiao, Geng Zihai, et al. Performance of line-divergence subsection supersonic diffuser for COIL. High Power Laser and Particle Beams, 2011, 23(5): 1211-1214)

[9] 黄知龙, 廖达雄, 张国彪. 附面层抽气扩压器试验研究[J]. 强激光与粒子束, 2006, 5(18): 725-727. (Huang Zhilong, Liao Daxiong, Zhang Guobiao. Test research on performance of the boundary scoop pumping diffuser, High power laser and particle beams, 2006, 5(18): 725-727)

[10] 陈吉明, 任玉新. 压力恢复系统扩压器激波串现象的数值模拟[J]. 空气动力学学报, 2008, 23(3): 304-309. (Chen Jiming, Renyuxin, Numerical simulation to the pseudo-shock of the supersonic diffuser in the pressure recovery system.Acta Aerodynamic Sinica, 2008, 3(23): 304-309)

[11] 陈吉明, 彭强, 廖达雄. 压力恢复系统扩压器性能初步研究[J]. 强激光与粒子束, 2007, 19(8): 1266-1270. (Chen Jiming, Peng Qiang, Liao Daxiong. Performance of supersonic diffuser in pressure recovery system. High Power Laser and Particle Beams, 2007, 19(8): 1266-1270)

[12] 闫宝珠, 袁圣付, 陆启生, 直排型DF/HF化学激光器扩压器喉道最佳长度实验研究[J]. 强激光与粒子束, 2009, 21(3): 331-334.(Yan Baozhu, Yuan Shengfu, Lu Qisheng. Experimental investigation on optimal length of diffuser throat in directly drained CW DF/HF chemical laser. High Power Laser and Particle Beams, 2009, 21(3): 331-334)

[13] 徐万武. 高性能、大压缩比化学激光器压力恢复系统研究[D]. 长沙: 国防科学技术大学. 2003. (Xu Wanwu. Study of high performance, high compression-ratio pressure recovery system for chemical laser. Changsha: National University of Defense Technology. 2003)

[14] 闫宝珠. 基区引射式连续波DF/HF化学激光器研究[D]. 长沙:国防科学技术大学. 2009. (Yan Baozhu. Study of base-ejecting CW DF/HF chemical laser. Changsha: National University of Defense Technology. 2009)

李金雪, 王杰, 颜飞雪, 王植杰, 郭建增. DF化学激光器扩压器流场仿真及优化[J]. 强激光与粒子束, 2018, 30(10): 101002. Li Jinxue, Wang Jie, Yan Feixue, Wang Zhijie, Guo Jianzeng. Simulation and optimization of DF chemical lasers’ diffuser[J]. High Power Laser and Particle Beams, 2018, 30(10): 101002.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!