光子学报, 2016, 45 (11): 1106007, 网络出版: 2016-12-06   

高精度动态光纤应变传感研究

Study of High-precision Dynamic Optical Fiber Strain Sensing
作者单位
安徽师范大学 物理与电子信息学院, 安徽 芜湖 241000
摘要
传统的光纤应变传感技术无法在满足高精度和强环境适应性的同时实现稳定的动态应变传感.为了解决该问题, 本文将光干涉原理应用于光纤应变传感, 设计了一种强环境适应性的基于干涉结构的高精度光纤应变传感系统, 基于扫频干涉信号的互相关系数, 该系统可以稳定地探测应变.本文还提出一种动态探测算法, 该算法弥补了系统只能探测较小应变的缺陷, 大大提升了实际应变的探测范围, 同时还实现了动态的应变检测; 采用三次样条插值算法, 提升了小应变探测的精度.理论分析和仿真模拟表明, 在加入白噪声的信号信噪比为15 dB时, 插值后的探测精度是未插值探测精度的2.3倍, 插值后本系统探测结果的最大误差只有约9 nε.
Abstract
Traditional fiber strain sensing technologies can not meet the properties of high precision, good environment adaptability and realize dynamic strain sensing stably at the same time. In order to solve this problem, an optical interference principle was adopted to realize optical fiber strain sensing in this paper, a kind of high-precision dynamic optical fiber strain sensing system with a good environment adaptability based on an interference structure was designed. The system can be used to detect strain stably based on cross correlation coefficient of swept interferometer signal. This paper also proposes the dynamic detecting method that significantly increases practical detection range to overcome the drawback that the system can only detect small strain and realize strain sensing dynamicly. The cubic spline interpolation algorithm was used to improve the accuracy of detection of small strain. Theoretical analysis and simulation experiments show that, the precision of measurements after interpolation is 2.3 times which is higher than that before interpolation, and the maximum measurement error of strain is only 9 nε when the signal to noise ratio is 15 dB.
参考文献

[1] ZHOU X, CHEN K, MAO X, et al. A reflective fiber-optic refractive index sensor based on multimode interference in a coreless silica fiber[J]. Optics Communications, 2015, 340: 50-55.

[2] 付兴虎, 谢海洋, 王柳柳, 等.单模与多模光纤级联型压力传感器[J].光子学报, 2015, 44(4): 0406005.

    FU Xing-hu, XIE Hai-yang, WANG Liu-liu, et al. Pressure sensor based on cascading single mode fiber with multimode fiber[J]. Acta Photonica Sinica, 2015, 44(4): 0406005.

[3] 董新永, 张颖, 关柏鸥, 等.光纤光栅曲率传感的实验研究[J]. 光子学报, 2000, 29(9): 806-809.

    DONG Xin-yong, ZHANG Ying, GUAN Bo-ou, et al. Experimental research of fiber grating circumflexion sensor [J]. Acta Photonica Sinica, 2000, 29(9): 806-809.

[4] 曹晔, 赵晨, 童峥嵘. 可双参量同时测量的干涉型全光纤传感器[J]. 光子学报, 2015, 44(10): 1006002.

    CAO Ye, ZHAO Chen, TONG Zheng-rong. Interferometric type all fiber optic sensor with simultaneous dual parameter measurement[J]. Acta Photonica Sinica, 2015, 44(10): 1006002.

[5] MINDRAO A, BEMINI R, ZENI L. Distributed temperatrue sensing in polymer optical fiber by BOFDA[J]. IEEE Photonics Technology Letters, 2014, 26(4): 387-390.

[6] 郑印, 段发阶, 涂勤昌, 等. 相位敏感光时域反射计识别入侵时间算法[J]. 光子学报, 2015, 44(1): 0106004.

    ZHEN Yin, DUAN Fa-jie, TU Qin-chang, et al. Signal processing of intrusion monitoring based on Φ-OTDR[J]. Acta Photonica Sinica, 2015, 44(1): 0106004.

[7] LU Y, ZHU T, CHEN L, et al. Distributed vibration sensor based on coherent detection of phase-OTDR[J]. Journal of Lightwave Technology, 2010, 28(22): 3243-3249.

[8] KOYAMADA Y, IMAHAMA M, KUBOTA K, et al. Fiber-optic disributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR[J]. Journal of Lightwave Technology, 2009, 27(9): 1142-1146.

[9] GONG H, CHAN C C, CHEN L, et al. Strain sensor realized by using low-birefringence photonic-crystal-fiber-based sagnac loop[J]. IEEE Photonics Technology Letters, 2010, 22(16): 1238-1240.

[10] WANG Y, SHEN C, LOU W, et al. Intensity modulation type fiber-optic strain sensor based on a Mach–Zehnder interferometer constructed by an up-taper with a LPG[J]. Optics Communications, 2016, 364: 72–75.

[11] MAS S, MARTI J, MONZN-HEMNDEZ D, et al. Low-cost refractive index and strain sensor based on tapered fibers[J]. Optics Communications, 2016, 361: 99–103.

[12] YANG Z, SHI P, LI Y. Research on COTDR for measuring distributed temperature and strain[C]. International Conference on Mechanic Automation & Control Engineering, 2011, (1): 590-593.

[13] MASOUDI, BELAL M, NEWSON T. A distributed optical fibre dynamic strain sensor based on phase-OTDR[J]. Measurement Science & Technology, 2013, 24(8): 085204-1-085204-7.

[14] HU C, WEN H, BAI W. A novel interrogation system for large scale sensing network with identical ultra-weak fiber Bragg gratings[J]. Journal of Lightwave Technology, 2014, 32(8): 1406–1411.

[15] MAY-ARRIOJA D A, ROIZ-PEREZ V I, BUSTOS-TERRONES Y, et al. Fiber optic pressure sensor using a conformal polymer on multimode interference device[J]. IEEE Sensors Jounal, 2016, 16(7): 1956-1961.

[16] LUO Z, WEN H, GUO H, et al. A time-and wavelength-division multiplexing sensor network with ultra-weak fiber Bragg gratings[J]. Optics Express, 2013, 21(19): 22799–22807.

[17] 吴俊, 陈伟民, 余葵, 等. 非栅区封装光纤布拉格光栅应变传感特性研究[J].光子学报, 2016, 45(2): 0206004.

    WU Jun, CHEN Wei-min, YU Kui, et al. Strain sensing properties of grating ends packaged FBG sensors[J]. Acta Photonica Sinica, 2016, 45(2): 0206004.

[18] LI Zhi-neng, SHEN Liang, YE Xian-feng. Study of polarization insensitive fiber optic michelson interferometric sensors[J]. Journal of Zhejiang University (Engineering Science), 2002, 36(1): 44–46.

[19] ZHU F, ZHANG Y, XIA L, et al. Improved Φ-OTDR sensing system for high-precision dynamic strain measurement based on ultra-weak fiber Bragg grating array[J]. Journal of Lightwave Technology, 2015, 33(23): 4775-4780.

[20] CHUDINOV A V, GAO W, HUANG Z, et al. Interpolational and smoothing cubic spline for mass spectrometry data analysis[J]. International Journal of Mass Spectrometry, 2016, 396: 42-47.

刘冲冲, 邹翔, 周正仙. 高精度动态光纤应变传感研究[J]. 光子学报, 2016, 45(11): 1106007. LIU Chong-chong, ZOU Xiang, ZHOU Zheng-xian. Study of High-precision Dynamic Optical Fiber Strain Sensing[J]. ACTA PHOTONICA SINICA, 2016, 45(11): 1106007.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!