光子学报, 2014, 43 (10): 1023001, 网络出版: 2014-11-06   

级联一维光子晶体全方位反射器的带宽最大化

The Maximum Photonic Bandgap Extension of Omni-directional Reflectors Based on Cascaded One-dimensional Photonic Crystal
张娟 *
作者单位
上海大学 通信与信息工程学院 特种光纤与光接入网省部共建教育部重点实验室, 上海 200072
摘要
理论研究了由级联一维光子晶体构成的光子异质结构的全方位透射(反射)特性.其中各级联光子晶体的高低折射率介质相同、光学厚度比不同.以两个光子晶体级联的结构为对象,利用传输矩阵方法系统研究了不同偏振态光在不同入射角时光子帯隙的变化,得出实现全方位光子带隙的最大展宽条件,即前一光子晶体的帯隙上限要和后一光子晶体的带隙下限在最大入射角时重合.分别给出了满足和不满足该最大展宽条件的级联结构的全方位带隙参量,通过对全方位带隙宽度的比较说明了满足最大展宽条件的级联结构具有最大的全方位带隙宽度.
Abstract
The omni-directional transmission (reflection) properties were theoretically investigated for photonic heterostructures composed of cascaded one-dimensional photonic crystals. Each photonic crystal in the structure has the same materials and different optical thickness ratios of the alternate high-and low-refractive index layers. Taking two photonic crystals cascaded structure as the object of study, the change of photonic bandgap with different polarization and incident angle was investigated through transfer matrix method, the condition of designing omnidirectional reflectors with the maximum photonic bandgap width was obtained, i.e., the upper bandgap edge of the former photonic crystal overlaps with the lower bandgap edge of the latter photonic crystal at the maximum incident angle. The parameters of the omnidirectional photonic bandgap were given for the cascaded structure with the condition satisfied and not satisfied. The widths of the omnidirectional photonic bandgap were compared. The results show that the cascaded structure with the condition satisfied has the maximum omnidirectional photonic bandgap width.
参考文献

[1] YABLONOVITCH E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physics Review Letters, 1987, 58(20): 2059-2062.

[2] JOHN S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physics Review Letters, 1987, 58(23): 2486-2489.

[3] KONG Xiang-kun, LIU Shao-bin, ZHANG Hai-feng, et al. Omnidirectional photonic band gap of one-dimensional ternary plasma photonic crystals[J]. Journal of Optics, 2011, 13(3): 035101.

[4] HART S D, MASKALY G R, TEMELKURAN B, et al. External reflection from omnidirectional dielectric mirror fibers[J]. Science, 2002, 296(5567): 510-513.

[5] NUSINSKY I, HARDY A A. Band-gap analysis of one-dimensional photonic crystals and conditions for gap closing[J]. Physical Review B, 2006, 73(12): 125104.

[6] FAN Chun-zhen, WANG Jun-qiao, HE Jin-na, et al. Theoretical study on the photonic band gap in one-dimensional photonic crystals with graded multilayer structure[J]. Chinese Physics B, 2013, 22(7): 074211.

[7] JIANG Li-yong, ZHENG Gai-ge, SHI Lin-xing, et al. Broad omnidirectional reflectors design using genetic algorithm[J]. Optics Communications, 2008, 281(19): 4882-4888.

[8] 张娟,于帅,郭森,等. 基于一维光子晶体理论的平顶偏振滤波器设计[J]. 中国激光,2011, 38(1): 0105005.

    ZHANG Juan, YU Shuai, GUO Sen, et al. Design of flat-top polarization filters based on one-dimensional photonic crystal theory[J]. Chinese Journal of Lasers, 2011, 38(1): 0105005.

[9] 顾佩芸,张娟,周益.基于各向异性介质的多通道平顶偏振滤波器的设计[J]. 光电子激光, 2012, 23(6) :1043-1050.

    GU Pei-yun, ZHANG Juan, ZHOU Yi. Design of multi-channel flat-top polarization filter based on aniso-tropic medium[J]. Journal of Optoelectronics·Laser, 2012, 23(6): 1043-1050.

[10] YU Shuai, ZHANG Juan. One-dimensional film-micro-cavity structure design for an asymmetrical interleaver filter[J]. Optoelectronics Letters, 2010, 6(2): 85-88.

[11] DEOPURA M, ULLAL C K, TEMELKURAN B, et al. Dielectric omnidirectional visible reflector[J]. Optics Letters, 2001, 26(15): 1197-1199.

[12] CHIGRIN D N, LAVRINENKO A V, YAROTSKY D A, et al. Observation of total omnidirectional reflection from a one-dimensional dielectric lattice[J]. Applied Physics A, 1999, 68(1): 25-28.

[13] JIANG Li-yong, ZHENG Gai-ge, SHI Lin-xing, et al. Broad omnidirectional reflectors design using genetic algorithm[J]. Optics Communications, 2008, 281(19): 4882-4888.

[14] KAMINSKA K, ROBBIE K, Birefringent omnidirectional reflector[J]. Applied Optics, 2004, 43(7): 1570-1576.

[15] DAI Xiao-yu, XIANG Yuan-jiang, WEN Shuang-chun, et al. Thermally tunable and omnidirectional terahertz photonic bandgap in the one-dimensional photonic crystals containing semiconductor InSb[J]. Journal of Applied Physics, 2001, 109(5): 053104.

[16] SRIVASTAVA S K, OJHA S P. Omnidirectional reflection bands in one-dimensional photonic crystal structure using fullerene films[J]. Progress in Electromagnetics Research, 2007, 74: 181-194.

[17] SRIVASTAVA S K, OJHA S P. Enhancement of omnidirectional reflection bands in one-dimensional photonic crystals with left-handed materials[J]. Progress in Electromagnetics Research, 2007, 68: 91-111.

[18] WU C J, CHUNG Y H, SYU B J, et al. Band gap extension in a one-dimensional ternary metal-dielectric photonic crystal[J]. Progress in Electromagnetics Research, 2010, 102: 81-93.

[19] WANG Xin, HU Xin-hua, LI Yi-zhou, et al. Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures[J]. Applied Physics Letters, 2002, 80(23): 4291-4293.

[20] MANZANARES-MARTINE J, ARCHULETA-GARCIA R, CASTRO-GARAY P, et al. One-dimensional photonic heterostructure with broadband omnidirectional reflection[J]. Progress in Electromagnetics Research, 2011, 111: 105-117.

[21] KUMAR V, KUMAR A, SINGH K H S, et al. Broadening of omni-directional reflection range by cascade 1D photonic crystal, Optoelectronics and advanced material-rapid communication[J]. Optoelectronics and Advanced Materials, 2011, 5(5): 488-490.

[22] SUTHAR B, BHARGAVA A. Enlargement of omni-directional reflection by cascading chalcogenide based photonic crystals[J]. Optics Communications, 2012, 285(6): 1481-1485.

[23] HAN Peng, WANG He-zhou. Criterion of omnidirectional reflection in a one-dimensional photonic heterostructure[J]. Journal of Optical Society of America B, 2005, 22(7): 1571-1575.

[24] BORN M, WOLF E. Principles of optics[M]. 7th (expanded) ed. Cambridge: Cambridge University Press, 1999.

张娟. 级联一维光子晶体全方位反射器的带宽最大化[J]. 光子学报, 2014, 43(10): 1023001. ZHANG Juan. The Maximum Photonic Bandgap Extension of Omni-directional Reflectors Based on Cascaded One-dimensional Photonic Crystal[J]. ACTA PHOTONICA SINICA, 2014, 43(10): 1023001.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!