强激光与粒子束, 2005, 17 (11): 1696, 网络出版: 2021-01-26  

激光功率密度对Al膜靶后表面快电子发射的影响

Laser intensity effects on forward hot electrons in interaction with Al foil
作者单位
中国科学院上海光学精密机械研究所,高功率激光物理国家实验室,上海,201800
摘要
报道了在20TW皮秒激光器上完成的p偏振激光与等离子体相互作用过程中产生的快电子的角分布和能谱测量结果.实验得到:当激光功率密度小于1017 W/cm2时,电子发射没有明显定向性,在激光入射面内多峰发射;当激光功率密度大于1017 W/cm2,小于1018 W/cm2时,电子主要沿靶面法线方向发射;当激光功率密度达到相对论强度时,电子主要沿激光传播方向发射;激光功率密度未达到相对论强度时,靶后表面法线方向快电子能谱拟合平均温度符合共振吸收温度定标率;激光功率密度达相对论强度以上时,靶后表面法线方向快电子能谱拟合平均温度高于已有的温度定标率.
Abstract
The characteristics of the forward hot electrons produced by 20 TW p-polarized picosecond laser-plasma interactions are studied at laser intensities from subrelativistic to relativistic.The spatial distribution of forward hot electrons is multi-peak distribution,as laser intensity is under 107 W/cm2.When laser intensity is between 1017 and 1018 W/cm2,the peak of the hot electron beam is along the target normal direction.The peak of the hot electron beam shifts to the laser propagation direction from the target normal direction as the laser intensity reaches the relativistic.The temperature of hot electrons fit resonance absorption scaling law as the laser intensity under the relativistic.The temperature of hot electrons is much higher than that expected by the empirical scaling law as the laser intensity reaches the relativistic.
参考文献

[1] Ebrahim N H, Baldis H A, Joshi C, et al. Hot electron generation by the two-plasmon decay instability in the laser-plasma interaction at 10.6 μm[J]. Phys Rev Lett, 1980, 45(14):1179.

[2] Brunel F. Not-so-resonant, resonant absorption[J]. Phys Rev Lett, 1987, 59(1):52.

[3] Ruhl H. Collimated electron jets by intense laser-beam-plasma surface interaction under oblique incidence[J]. Phys Rev Lett, 1999, 82(4):743.

[4] Rousseaux C, Rabec M, Baton S D, et al. Strong absorption, intense forward-Raman scattering and relativistic electrons driven by a short, high intensity laser pulse through moderately underdense plasmas[J]. Phys Plasma, 2002, 9(10):4261.

[5] Turner R E, Estabrook K, Kauffman, et al. Evidence for collisional damping in high-energy Raman-scattering experiments at 0.26 μm[J]. Phys Rev Lett, 1985, 54(3):189.

[6] Tajima T, Dawson J M. Laser electron accelerator[J]. Phys Rev Lett, 1979, 43(4):267.

[7] Tabak M, Hammer J, Glinsky M E, et al. Ignition and high gain with ultrapowerful lasers[J]. Phys Plasmas, 1994, 1(5):1626.

[8] Malka G, Miquel J L. Experimental confirmation of ponderomotive-force electrons produced by an ultrarelativistic laser pulse on a solid target[J]. Phys Rev Lett, 1996, 77(1):75.

[9] Kodama R, Mima k, Tanaka K A, et al. Fast ignitor research at the institute of laser engineering, Osaka University[J]. Phys Plasmas, 2001, 8(5):2268.

[10] Zhang J, Zhang J, Sheng Z M, et al. Emission direction of fast electrons in laser-solid interactions at intensities from the nonrelativistic to the relativistic[J]. Phys Rev E, 2004, 69:046408.

[11] Li Y T, Zhang J, Sheng Z M, et al. High-energy electrons produced in subpicosecond laser-plasma interactions from subrelativistic laser intensities to relativistic intensities[J]. Phys Rev E, 2004, 69:036405.

[12] Zhidkov A, Sasaki A, Utsumi T, et al. Prepulse effects on the interaction of intense femtosecond laser pulses with high-Z solids[J]. Phys Rev E, 2000, 62(5):7232.

[13] Clark E L, Krushelnick K, Zepf M, et al. Energetic heavy-ion and proton generation from ultraintense laser-plasma interactions with solids[J]. Phys Rev Lett, 2000, 85(8):1654.

[14] Hans B. Experimental range of protons in Al[J]. Phys Rev, 1958, 112(4):1089.

[15] 蔡达锋,谷渝秋,郑志坚,等. 飞秒激光与等离子体相互作用过程中超热电子能谱的测量[J]. 强激光与粒子束, 2003, 15(6):575.
Cai D F, Gu Y Q, Zheng Z J, et al. Measurement of hot electron energy spectrum in femtosecond laser-plasma. High Power Laser and Particle Beams, 2003, 15(6):575

[16] Borghesi M, Mackinnon A J, Brringer L, et al. Relativistic channeling of a picosecond laser pulse in a near-critical preformed plasma[J]. Phys Rev Lett, 1997, 78(5):879.

[17] Norreys P A, Santala A, Clark E, et al. Observation of a highly directional-ray beam from ultrashort, ultraintense laser pulse interactions with solids[J]. Phys Plasmas, 1999, 6(5):2150.

[18] Beg F N, Bell A R, Dangor A E, et al. A study of picosecond laser-solid interactions up to 1019 W·cm-2[J]. Phys Plasmas, 1997, 4(2):447.

[19] Wilks S C, Kruer W L, Tabak M, et al. Absorption of ultra-intense laser pulses[J]. Phys Rev Lett, 1992, 69(9):1383.

张淼, 王琛, 方智恒, 王瑞荣, 傅思祖, 顾援, 林尊琪. 激光功率密度对Al膜靶后表面快电子发射的影响[J]. 强激光与粒子束, 2005, 17(11): 1696. ZHANG Miao, WANG Chen, FANG Zhi-heng, WANG Rui-rong, FU Si-zu, GU Yuan, LIN Zun-qi. Laser intensity effects on forward hot electrons in interaction with Al foil[J]. High Power Laser and Particle Beams, 2005, 17(11): 1696.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!