光学学报, 2019, 39 (5): 0515003, 网络出版: 2019-05-10   

基于深度信息的大豆株高计算方法 下载: 1544次

Calculation Method of Soybean Plant Height Based on Depth Information
作者单位
1 黑龙江八一农垦大学电气与信息学院, 黑龙江 大庆 163319
2 黑龙江八一农垦大学农学院, 黑龙江 大庆 163319
引用该论文

冯佳睿, 马晓丹, 关海鸥, 朱可心, 于菘. 基于深度信息的大豆株高计算方法[J]. 光学学报, 2019, 39(5): 0515003.

Jiarui Feng, Xiaodan Ma, Haiou Guan, Kexin Zhu, Song Yu. Calculation Method of Soybean Plant Height Based on Depth Information[J]. Acta Optica Sinica, 2019, 39(5): 0515003.

参考文献

[1] Garrido M, Paraforos D S, Reiser D, et al. 3D Maize plant reconstruction based on georeferenced overlapping LiDAR point clouds[J]. Remote Sensing, 2015, 7(12): 17077-17096.

[2] Lipka A E, Kandianis C B, Hudson M E, et al. From association to prediction: statistical methods for the dissection and selection of complex traits in plants[J]. Current Opinion in Plant Biology, 2015, 24: 110-118.

[3] Haughton A J, Bohan D A, Clark S J, et al. Dedicated biomass crops can enhance biodiversity in the arable landscape[J]. Global Change Biology Bioenergy, 2016, 8(6): 1071-1081.

[4] 宋祺鹏, 唐晶磊, 辛菁. 基于生长模型的苗期大豆植株三维重建[J]. 计算机工程, 2017, 43(5): 275-280.

    Song Q P, Tang J L, Xin J. 3-dimensional reconstruction for soybean plant of seedling stage based on growth model[J]. Computer Engineering, 2017, 43(5): 275-280.

[5] Pratap A, Tomar R, Kumar J, et al. High-throughput plant phenotyping platforms[J]. Phenomics in Crop Plants: Trends Options and Limitations, 2015: 285-296.

[6] Barker III J, Zhang N Q, Sharon J, et al. Development of a field-based high-throughput mobile phenotyping platform[J]. Computers and Electronics in Agriculture, 2016, 122: 74-85.

[7] PalanichamyD, Cobb JN. Agronomic field trait phenomics[M]. New York: Springer, 2015: 83- 99.

[8] 李辉. 基于虚拟双目视觉的玉米叶片三维重建方法[J]. 科技通报, 2016, 32(5): 96-101.

    Li H. 3D reconstruction of maize leaves based on virtual visual technology[J]. Bulletin of Science and Technology, 2016, 32(5): 96-101.

[9] 李抒昊, 关海鸥, 于崧, 等. 基于FastSCAN玉米整株三维重构及参数计算方法[J]. 农机化研究, 2018, 40(4): 162-166.

    Li S H, Guan H O, Yu S, et al. Whole 3D reconstruction based on fast SCAN corn and parameter calculation method[J]. Journal of Agricultural Mechanization Research, 2018, 40(4): 162-166.

[10] 蒋普, 耿楠. 基于网络摄像机的株高远程无损测量系统[J]. 农机化研究, 2015, 37(4): 68-72.

    Jiang P, Geng N. Crop height non-destructive remote measurement based on IP camera[J]. Journal of Agricultural Mechanization Research, 2015, 37(4): 68-72.

[11] 李泉, 程效军, 田芮, 等. 多站地面三维激光扫描强度数据纠正与归一化[J]. 激光与光电子学进展, 2017, 54(12): 122802.

    Li Q, Cheng X J, Tian R, et al. Correction and normalization of multi-scan terrestrial three-dimensional laser scanning intensity[J]. Laser & Optoelectronics Progress, 2017, 54(12): 122802.

[12] 肖杨, 胡少兴, 肖深, 等. 从三维激光点云中快速统计树木信息的方法[J]. 中国激光, 2018, 45(5): 0510007.

    Xiao Y, Hu S X, Xiao S, et al. A fast statistical method of tree information from 3D laser point clouds[J]. Chinese Journal of Lasers, 2018, 45(5): 0510007.

[13] 马晓丹, 郭彩玲, 张雪, 等. 基于三维点云颜色特征的苹果树冠层光照分布计算方法[J]. 农业机械学报, 2015, 46(6): 263-268.

    Ma X D, Guo C L, Zhang X, et al. Calculation of light distribution of apple tree canopy based on color characteristics of 3D point cloud[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(6): 263-268.

[14] 马晓丹, 郭彩玲, 张雪, 等. 苹果树冠层不同光照区域叶绿素荧光性状计算方法[J]. 光谱学与光谱分析, 2016, 36(12): 3986-3990.

    Ma X D, Guo C L, Zhang X, et al. Calculation of chlorophyll fluorescence characters in different light area to apple tree canopy[J]. Spectroscopy and Spectral Analysis, 2016, 36(12): 3986-3990.

[15] Jiang Y, Li C Y, Paterson A H. High throughput phenotyping of cotton plant height using depth images under field conditions[J]. Computers and Electronics in Agriculture, 2016, 130: 57-68.

[16] Ma X D, Feng J R, Guan H O, et al. Prediction of chlorophyll content in different light areas of apple tree canopies based on the color characteristics of 3D reconstruction[J]. Remote Sensing, 2018, 10(3): 429.

[17] SkerikF, VolfJ, LindaM, et al. Methods for detection of objects in agriculture, Prague[C]∥Conference Proceeding-5th International Conference, TAE 2013: Trends in Agricultural Engineering, September 3-6, 2013. Czech University of Life Sciences Prague, 2013, 599- 601.

[18] YamamotoS, HayashiS, SaitoS, et al. Measurement of growth information of a strawberry plantusing a natural interaction device[C]∥2012 Dallas, Texas, July 29-August 1, 2012. American Society of Agricultural and Biological Engineers, 2012: 121341108.

[19] 沈跃, 朱嘉慧, 刘慧, 等. 基于深度和彩色双信息特征源的Kinect植物图像拼接[J]. 农业工程学报, 2018, 34(5): 176-182.

    Shen Y, Zhu J H, Liu H, et al. Plant image mosaic based on depth and color dual information feature source from Kinect[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(5): 176-182.

[20] 刘明, 卜伟召, 杨文钰, 等. 山东间作大豆产量与主要农艺性状关联分析[J]. 中国油料作物学报, 2018, 40(3): 344-351.

    Liu M, Bu W Z, Yang W Y, et al. Correlation analysis of yield and agronomic traits of soybean for intercropping in Shangdong[J]. Chinese Journal of Oil Crop Sciences, 2018, 40(3): 344-351.

[21] 刘刚, 张雪, 宗泽, 等. 基于深度信息的草莓三维重建技术[J]. 农业机械学报, 2017, 48(4): 160-165, 172.

    Liu G, Zhang X, Zong Z, et al. 3D reconstruction of strawberry based on depth information[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(4): 160-165, 172.

[22] 余秀丽, 王丹丹, 牛磊磊, 等. Kinect 在现代农业信息领域中的应用与研究进展[J]. 农机化研究, 2015, 37(11): 216-221.

    Yu X L, Wang D D, Niu L L, et al. The applications and research progress of kinect in the information field of modern agriculturae[J]. Journal of Agricultural Mechanization Research, 2015, 37(11): 216-221.

[23] 郭连朋, 陈向宁, 刘彬. Kinect传感器的彩色和深度相机标定[J]. 中国图象图形学报, 2014, 19(11): 1584-1590.

    Guo L P, Chen X N, Liu B. Calibration of Kinect sensor with depth and color camera[J]. Journal of Image and Graphics, 2014, 19(11): 1584-1590.

[24] 李雅娜. Kinect深度相机标定算法研究[D]. 西安: 西安电子科技大学, 2014.

    Li YN. Research on calibration algorithm of Kinect depth camera[D]. Xi'an:Xidian University, 2014.

[25] 王珊, 徐晓. 基于双目单视面的三维重建[J]. 光学学报, 2017, 37(5): 0515004.

    Wang S, Xu X. 3D reconstruction based on horopter[J]. Acta Optica Sinica, 2017, 37(5): 0515004.

[26] 周薇, 马晓丹, 张丽娇, 等. 基于多源信息融合的果树冠层三维点云拼接方法研究[J]. 光学学报, 2014, 34(12): 1215003.

    Zhou W, Ma X D, Zhang L J, et al. Three dimensional point cloud splicing of tree canopy based on multi-source camera[J]. Acta Optica Sinica, 2014, 34(12): 1215003.

[27] 王孟博. 基于点云的作物植株三维重建技术研究[J]. 鄂州大学学报, 2018, 25(1): 104-106, 109.

    Wang M B. Study on three-dimensional reconstruction of crop plants based on point cloud[J]. Journal of Ezhou University, 2018, 25(1): 104-106, 109.

[28] . Matlab 的图像阈值分割算法研究[J]. 软件导刊, 2014, 13(12): 76-78.

    Li X Q. Research on image threshold segmentation algorithm based on Matlab[J]. Software Guide, 2014, 13(12): 76-78.

[29] Guan H O, Liu M, Ma X D, et al. Three-dimensional reconstruction of soybean canopies using multisource imaging for phenotyping analysis[J]. Remote Sensing, 2018, 10(8): 1206.

[30] 朱冰琳, 刘扶桑, 朱晋宇, 等. 基于机器视觉的大田植株生长动态三维定量化研究[J]. 农业机械学报, 2018, 49(5): 256-262.

    Zhu B L, Liu F S, Zhu J Y, et al. Three-dimensional quantifications of plant growth dynamics in field-grown plants based on machine vision method[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(5): 256-262.

[31] CarloneL, DongJ, FenuS, et al. Towards 4D crop analysis in precision agriculture: estimating plant height and crown radius over time via expectation-maximization[C]∥IEEE ICRA Workshop on Robotics in Agriculture, May 26-30, 2015 Seattle, WA, USA, 2015.

冯佳睿, 马晓丹, 关海鸥, 朱可心, 于菘. 基于深度信息的大豆株高计算方法[J]. 光学学报, 2019, 39(5): 0515003. Jiarui Feng, Xiaodan Ma, Haiou Guan, Kexin Zhu, Song Yu. Calculation Method of Soybean Plant Height Based on Depth Information[J]. Acta Optica Sinica, 2019, 39(5): 0515003.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!