红外与激光工程, 2019, 48 (6): 0606003, 网络出版: 2019-07-29  

周期性温度激励对MGDL混合性能及小信号增益系数的影响

Influence of periodic temperature excitation on mixing performance and small signal gain coefficient of mixing gasdynamic CO2 laser
作者单位
1 中国空气动力研究与发展中心 高超声速冲压发动机技术重点实验室, 四川 绵阳 621000
2 国防科技大学 航天科学与工程学院, 湖南 长沙 410073
摘要
将基于周期性温度激励的主动控制技术引入“混合型气动CO2激光器(MGDL)”研究, 通过数值计算深入研究了周期性温度激励对MGDL主/副气流混合特性及小信号增益系数的影响。研究结果表明: 与未施加周期性温度激励的情形相比, 在MGDL副喷管出口位置施加特定幅值及特定频率的周期性温度激励后, 可以显著增强主/副气流的混合效果并大幅提高混合喷管中的小信号增益系数。激励幅值和激励频率对主/副气流混合特性及小信号增益系数有重要影响: 随着激励幅值的增加, 小信号增益系数先增大后减小; 在混合喷管下游区域, 文中所选的六种激励频率条件下获得的小信号增益系数均高于未施加周期性温度激励时的情形; 随着激励频率的增加, 主/副气流的混合效果越来越好, 但当激励频率增加到一定值后, 主/副气流的混合效果不再发生变化。
Abstract
Initiative control technology based on periodic temperature excitation was used for mixing gasdynamic CO2 laser(MGDL). Through numerical simulation, influences of periodic temperature excitation on mixing characteristic of donor and assistant flows and small signal gain coefficient of mixing gasdynamic CO2 laser were studied. Investigation results indicate that compared with the case that has no periodic temperature excitation, mixing efficiency of donor and assistant flows can be enhanced and small signal gain coefficient in mixing nozzle can be improved when periodic temperature excitation with certain excitation amplitude and excitation frequency is imposed at the outlet of assistant nozzle. Excitation amplitude and excitation frequency have important effects on mixing efficiency of donor and assistant flows and small signal gain coefficient. As the excitation amplitude increases, the small signal gain coefficient first increases and then decreases. In downstream area of mixing nozzle, small signal gain coefficients under the condition of the six excitation frequencies selected by this paper are all higher than the state without periodic temperature excitation. With the increase of excitation frequency, mixing efficiency of donor and assistant flows becomes better and better; but when the excitation frequency increases up to a certain value, mixing efficiency of donor and assistant flows will not change any more.
参考文献

[1] Chakravarty P, Reddy N M, Reddy K P J. Evaluation of downstream mixing scheme for 9.4 μm CO2 gasdynamic laser[J]. Journal of Physics, 1990, 34(4): 333-345.

[2] Taran J P E, Charpenel M, Borghi R. Investigation of a mixing CO2 GDL[C]//6th Fluid and Plasma Dynamics Conference, 1973.

[3] Cassady P E, Newton J F, Rose P H. A new mixing gasdynamic laser[C]//9th Fluid and Plasma Dynamics Conference, 1976.

[4] Cassady P E. Survey of advanced gasdynamic laser concepts[J]. J Energy, 1980, 4(4): 145-161.

[5] MeLaaghilin D K, Martens S, Kinzie K W. An experimental investigation of large scale instabilities in a low Reynolds Number two-stream supersonic shear layer[C]//9th Fluid and Plasma Dynamics Conference, 1976.

[6] Adelgren R G, EUiott G S, Crawford J B. Axisymmetric jet shear-layer excitation by laser energy and electric arc discharges[J]. AIAA Journal, 2005, 43(4): 776-791.

[7] 孙明波, 王振国, 梁剑寒. 入流周期性温度激励下的二维超声速混合层混合增强[J]. 宇航学报, 2008, 29(2): 444-448.

    Sun Mingbo, Wang Zhenguo, Liang Jianhan. Mixing enhancement of a 2D supersonic mixing layer induced by inflow periodic temperature excitation[J]. Journal of Astronautics, 2008, 29(2): 444-448. (in Chinese)

[8] 赖林. 预混/混合型气动CO2激光器新型喷管设计及增益场数值仿真研究[D]. 长沙: 国防科技大学, 2013: 121-122.

    Lai Lin. Design and small signal gain field investigation of the new concept nozzles of pre-mixing/mixing gasdynamic CO2 laser[D]. Changsha: National University of Defense Technology, 2013: 121-122. (in Chinese)

[9] 王卫东. 垂直射流混合的三维湍流数值模拟[J]. 推进技术, 1998, 19(2): 58-62.

    Wang Weidong. CFD mixing analysis of vortex generator jets injected into confined crossflow in rectangular duct[J]. Journal of Propulsion Technology, 1998, 19(2): 58-62. (in Chinese)

[10] Anderson J D. Gasdynamic Lasers: An Introduction[M]. New York, San Francisco, London: Academic Press, 1976: 35-37.

[11] 严海星. CO2-N2-H2O激光体系的振动弛豫过程速率数据[J]. 中国激光, 1981, 8(6): 1-8.

    Yan Haixing. Data of vibrational relaxation processes rate in CO2-N2-H2O laser system[J]. Chinese Journal of Lasers, 1981, 8(6): 1-8. (in Chinese)

[12] 翟小飞. 混合型气动CO2激光器喷管/光腔流场特性及小信号增益特性研究[D]. 长沙: 国防科技大学, 2015: 38-45.

    Zhai Xiaofei. Study on flow field characteristic of nozzle and laser cavity and small signal gain characteristic of mixing gasdynamic CO2 laser[D]. Changsha: National University of Defense Technology, 2015: 38-45. (in Chinese)

翟小飞, 周进, 赖林. 周期性温度激励对MGDL混合性能及小信号增益系数的影响[J]. 红外与激光工程, 2019, 48(6): 0606003. Zhai Xiaofei, Zhou Jin, Lai Lin. Influence of periodic temperature excitation on mixing performance and small signal gain coefficient of mixing gasdynamic CO2 laser[J]. Infrared and Laser Engineering, 2019, 48(6): 0606003.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!