光谱学与光谱分析, 2016, 36 (1): 42, 网络出版: 2016-02-02   

偏振光谱BRDF建模与仿真

Modeling and Simulation of Spectral Polarimetric BRDF
作者单位
合肥工业大学计算机与信息学院, 安徽 合肥 230009
摘要
在偏振光条件下, 物体的表面反射受到折射率、 表面粗糙度、 入射角等多种因素的影响。 针对粗糙物体表面在不同波段光照下表现出不同的偏振反射特性, 提出一种基于Kirchhof理论的偏振光谱BRDF模型。 利用已知材质在不同波长下的复折射率, 对其折射率和消光系数部分分别反演出的对应光谱模型, 进而得到复折射率的光谱模型; 同借鉴经典的表面粗糙度测量方法, 结合菲涅耳反射公式, 推导出表面粗糙度的光谱模型, 将得到的复折射率和粗糙度光谱模型与BRDF模型相结合, 推导出偏振光谱BRDF建模。 模型分别在折射率随波长变化、 粗糙度为常量, 折射率、 粗糙度均随波长变化以及原模型三种情况下进行仿真对比实验, 并将所得到的数据与其他资料进行对比。 其结果表明, 该模型能够较为准确的反映物体表面的偏振反射特性, 并且能够描述偏振度随波长变化趋势的光谱特征, 能够为偏振遥感、 物质分类等方面的应用提供可靠依据。
Abstract
Under the conditions of the polarized light, The reflective surface of the object is affected by many factors, refractive index, surface roughness, and so the angle of incidence. For the rough surface in the different wavelengths of light exhibit different reflection characteristics of polarization, a spectral polarimetric BRDF based on Kirchhof theory is proposee. The spectral model of complex refraction index is combined with refraction index and extinction coefficient spectral model which were got by using the known complex refraction index at different value. Then get the spectral model of surface roughness derived from the classical surface roughness measuring method combined with the Fresnel reflection function. Take the spectral model of refraction index and roughness into the BRDF model, then the spectral polarimetirc BRDF model is proposed. Compare the simulation results of the refractive index varies with wavelength, roughness is constant, the refraction index and roughness both vary with wavelength and origin model with other papers, it shows that, the spectral polarimetric BRDF model can show the polarization characteristics of the surface accurately, and can provide a reliable basis for the application of polarization remote sensing, and other aspects of the classification of substances.
参考文献

[1] Bartlett B D, Gartley M G, Messinger D W. Journal of Applied Remote Sensing, 2010, 4(1): 043552-21.

[2] Prokopenko V T, Alekseev S A, Matveev N V, et al. Optics and Spectroscopy, 2013, 114(6): 961.

[3] Priest R G, Gerner T A. Polarimetric BRDF in the Microfacet Model: Theory and Measurements, Naval Research Lab. Washington D C, 2000.

[4] He X D, Torrance K E, Sillion F X, et al. ACM SIGGRAPH Computer Graphics, 1991, 25(4): 175.

[5] Torrance K E, Sparrow E M. JOSA, 1967, 57(9): 1105.

[6] Li H, Torrance K E. Program of Computer Graphics, Tech. Rep. PCG-05-03, Cornell Univ., Ithaca, NY, 2005.

[7] Carlson E J. Development of a Spectropolarimetric Remote Sensing Caplbility, Air Force Inst of Tech Wright-Patterson AFB OH Graduate School of Engineering and Management, 2013.

[8] Volz F E. Applied Optics, 1972, 11(4): 755.

[9] FENG Wei-wei, WEI Qing-nong, WANG Shi-mei(冯巍巍, 魏庆农, 汪世美). Acta Optica Sinica(光学学报), 2008, 28(2): 290.

[10] GAO Ming, SONG Chong, GONG Lei(高明, 宋冲, 巩蕾). Chinese Journal of Lasers(中国激光), 2013, (12): 225.

[11] Bennett H E J, Porteus J O. JOSA, 1961, 51(2): 123.

[12] Bennett H E. JOSA, 1963, 53(12): 1389.

[13] Goldstein D H. International Symposium on Optical Science and Technology. International Society for Optics and Photonics, 2000. 112.

凌晋江, 李钢, 张仁斌, 汤倩, 叶秋. 偏振光谱BRDF建模与仿真[J]. 光谱学与光谱分析, 2016, 36(1): 42. LING Jin-jiang, LI Gang, ZHANG Ren-bin, TANG Qian, YE Qiu. Modeling and Simulation of Spectral Polarimetric BRDF[J]. Spectroscopy and Spectral Analysis, 2016, 36(1): 42.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!