红外与激光工程, 2016, 45 (5): 0513001, 网络出版: 2016-06-12   

离轴三反大视场空间相机像移速度场模型

Image motion velocity field of off-axis TMA space camera with large field of view
作者单位
1 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
摘要
大视场空间相机在轨成像期间, 由于地球自转、卫星姿态机动和颤振等因素导致焦面像速场呈非线性各向异性分布。为此提出了一种新的基于刚体运动学的像移速度场建模方法, 考虑离轴角参数, 推导了离轴三反大视场空间相机的像速场解析式。以某大视场空间相机为例, 分析了侧摆成像时同速与异速像移速度匹配模式对相机成像质量的影响。分析结果表明: 以传函下降5%为约束, 侧摆15°成像时, 当积分级数大于10级时应采用异速匹配模式, 积分级数为32级时, 异速匹配相比于同速匹配使焦面动态MTF从0.340 8提高到0.970 2。当积分级数确定为16级时, 侧摆角在12.3°以内时可采用同速匹配模式。在轨成像结果证明了像移速度场模型的准确性, 可为大视场空间相机像移补偿提供可靠依据。
Abstract
During the onboard imaging process of space camera with large field of view, due to the effects of earth rotation, satellite attitude maneuverings, jittering and other factors, image motion velocity field of the focal plane has a non-linear anisotropic distribution. To overcome this problem, a novel image motion velocity field modeling method which is based on kinematics of rigid body was proposed. In this model, off-axis angle parameter was introduced and formulas of image motion velocity field in the large view off-axis three-mirror system were derived. Taking a certain large field space camera as an example, influences of synchronous and asynchronous velocity matching models on the camera image qualities were analyzed. Results show that, under a constraint of 5% drop and with scroll angle of 15°, if integral stages are larger than 10, asynchronous velocity matching models should be adopted. Especially when integral stages are fixed to 32, its dynamic MTF on focal plane can be improved to 0.970 2 while it is 0.340 8 in the synchronous model case. However, synchronous velocity matching model outperforms in the condition of 16 integral stages and 12.3° scroll angle. Onboard imaging experiments proved the accuracy of the models which will provide a reliable basis for large field space camera image motion compensation.
参考文献

[1] 闫得杰, 李伟雄, 吴伟平, 等. 空间相机像移补偿计算中飞行器大姿态角使用方法[J]. 红外与激光工程, 2014, 43(4): 1200-1205.

    Yan Dejie, Li Weixiong, Wu Weiping, et al. Aircraft′s large attitude angles′s usage in image motion compensation calculation of space camera[J]. Infrared and Laser Engineering, 2014, 43(4): 1200-1205. (in Chinese)

[2] 王国良, 刘金国, 龙科慧, 等. 离轴三反航天测绘相机像移对成像质量的影响[J]. 光学 精密工程, 2014, 22(3): 806-813.

    Wang Guoliang, Liu Jinguo, Long Kehui, et al. Influence of image motion on image quality of off-axis TMA aerospace mapping camera[J]. Opt Precision Eng, 2014, 22(3): 806-813. (in Chinese)

[3] 张树青, 张媛, 周程灏, 等. 星载TDICCD相机方位扫描像移模型研究[J]. 红外与激光工程, 2014, 43(6): 1823-1829.

    Zhang Shuqing, Zhang Yuan, Zhou Chenghao, et al. Image motion model of azimuthally photography for satellite borne TDICCD camera[J]. Infrared and Laser Engineering, 2014, 43(6): 1823-1829. (in Chinese)

[4] 孙继明, 郭疆, 邵明东, 等. 大视场时间延迟积分CCD遥感相机的精密定焦[J]. 光学 精密工程, 2014, 22(3): 602-607.

    Sun Jiming, Guo Jiang, Shao Mingdong, et al. Precise focusing for TDICCD camera with wide field of view[J]. Opt Precision Eng, 2014, 22(3): 602-607. (in Chinese)

[5] 宁永慧, 郭永飞. 星上时间延迟积分CCD拼接相机图像的实时处理[J]. 光学 精密工程, 2014, 22(2): 508-516.

    Ning Yonghui, Guo Yongfei. Real-time image processing in TDICCD space mosaic camera[J]. Opt Precision Eng, 2014, 22(2): 508-516. (in Chinese)

[6] 郭汉洲, 吕恒毅, 曲利新. 遥感相机动态调制传递函数与时间延迟积分CCD行周期误差的关系[J]. 光学 精密工程, 2013, 21(8): 2195-2200.

    Guo Hanzhou, Lv Hengyi, Qu Lixin. Relation of line transfer period error and dynamic MTF of TDICCD in remote sensing camera[J]. Opt Precision Eng, 2013, 21(8): 2195-2200. (in Chinese)

[7] Ghosh S K. Image motion compensation through augmented collinearity equations[J]. Optical Engineering, 1985, 24(6): 241014.

[8] 王家骐, 于平, 颜昌翔, 等. 航天光学遥感器像移速度矢计算数学模型[J]. 光学学报, 2004, 24(12): 1585-1589.

    Wang Jiaqi, Yu Ping, Yan Changxiang, et al. Space optical remote sensor image motion velocity vector computational modeling[J]. Acta Optica Sinica, 2004, 24(12): 1585-1589. (in Chinese)

[9] 武星星, 刘金国, 孔德柱, 等. 基于地球椭球的离轴式双线阵相机像移补偿[J]. 红外与激光工程, 2014, 43(3): 838-844.

    Wu Xingxing, Liu Jinguo, Kong Dezhu, et al. Image motion compensation of off-axis two-line camera based on earth ellipsoid[J]. Infrared and Laser Engineering, 2014, 43(3): 838-844. (in Chinese)

[10] 王翀, 尤政, 邢飞, 等. 大视场空间遥感相机的像速场及图像传感器曝光积分控制[J]. 光学学报, 2013, 33(5): 0511002.

    Wang Chong, You Zheng, Xing Fei, et al. Image motion velocity for wide view remote sensing camera and detectors exposure integration control[J]. Acta Optic Sinica, 2013, 33(5): 0511002. (in Chinese)

李永昌, 金龙旭, 武奕楠, 王文华, 吕增明, 韩双丽. 离轴三反大视场空间相机像移速度场模型[J]. 红外与激光工程, 2016, 45(5): 0513001. Li Yongchang, Jin Longxu, Wu Yinan, Wang Wenhua, Lv Zengming, Han Shuangli. Image motion velocity field of off-axis TMA space camera with large field of view[J]. Infrared and Laser Engineering, 2016, 45(5): 0513001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!