光学学报, 2018, 38 (4): 0411004, 网络出版: 2018-07-10   

基于总变分最小化模型的异步并行GPU加速算法 下载: 765次

Asynchronous Parallel GPU Acceleration Method Based on Total Variation Minimization Model
作者单位
解放军信息工程大学信息系统工程学院, 河南 郑州 450002
引用该论文

路万里, 蔡爱龙, 郑治中, 王林元, 李磊, 闫镔. 基于总变分最小化模型的异步并行GPU加速算法[J]. 光学学报, 2018, 38(4): 0411004.

Wanli Lu, Ailong Cai, Zhizhong Zheng, Linyuan Wang, Lei Li, Bin Yan. Asynchronous Parallel GPU Acceleration Method Based on Total Variation Minimization Model[J]. Acta Optica Sinica, 2018, 38(4): 0411004.

参考文献

[1] Buzug TM. Computed tomography: From photon statistics to modern cone-beam CT[M]. Berlin Heidelberg: Springer-Verlag, 2008.

    Buzug TM. Computed tomography: From photon statistics to modern cone-beam CT[M]. Berlin Heidelberg: Springer-Verlag, 2008.

[2] Feldkamp L A, Davis L C, Kress J W. Practical cone-beam algorithm[J]. Journal of the Optical Society of America A, 1984, 1(6): 612-619.

    Feldkamp L A, Davis L C, Kress J W. Practical cone-beam algorithm[J]. Journal of the Optical Society of America A, 1984, 1(6): 612-619.

[3] Liu Y, Liang Z R, Ma J H, et al. Total variation-stokes strategy for sparse-view X-ray CT image reconstruction[J]. IEEE Transactions on Medical Imaging, 2014, 33(3): 749-763.

    Liu Y, Liang Z R, Ma J H, et al. Total variation-stokes strategy for sparse-view X-ray CT image reconstruction[J]. IEEE Transactions on Medical Imaging, 2014, 33(3): 749-763.

[4] Xu Q, Yu H Y, Mou X Q, et al. Low-dose X-ray CT reconstruction via dictionary learning[J]. IEEE Transactions on Medical Imaging, 2012, 31(9): 1682-1697.

    Xu Q, Yu H Y, Mou X Q, et al. Low-dose X-ray CT reconstruction via dictionary learning[J]. IEEE Transactions on Medical Imaging, 2012, 31(9): 1682-1697.

[5] Tuy H K. An inversion formula for cone-beam reconstruction[J]. SIAM Journal on Applied Mathematics, 1983, 43(3): 546-552.

    Tuy H K. An inversion formula for cone-beam reconstruction[J]. SIAM Journal on Applied Mathematics, 1983, 43(3): 546-552.

[6] Smith B D. Image reconstruction from cone-beam projections: Necessary and sufficient conditions and reconstruction methods[J]. IEEE Transactions on Medical Imaging, 1985, 4(1): 14-25.

    Smith B D. Image reconstruction from cone-beam projections: Necessary and sufficient conditions and reconstruction methods[J]. IEEE Transactions on Medical Imaging, 1985, 4(1): 14-25.

[7] NattererF, WubbelingF. Mathematical methods in image reconstruction[M]. Philadelphia: Society for Industrial and Applied Mathematics, 2001.

    NattererF, WubbelingF. Mathematical methods in image reconstruction[M]. Philadelphia: Society for Industrial and Applied Mathematics, 2001.

[8] Gordon R, Bender R, Herman G T. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography[J]. Journal of Theoretical Biology, 1970, 29(3): 471-481.

    Gordon R, Bender R, Herman G T. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography[J]. Journal of Theoretical Biology, 1970, 29(3): 471-481.

[9] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.

    Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.

[10] Romberg J, Tao T. Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.

    Romberg J, Tao T. Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.

[11] Sidky E Y, Kao C M, Pan X C. Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT[J]. Journal of X-ray Science and Technology, 2006, 14(2): 119-139.

    Sidky E Y, Kao C M, Pan X C. Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT[J]. Journal of X-ray Science and Technology, 2006, 14(2): 119-139.

[12] Sidky E Y, Pan X C. Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization[J]. Physics in Medicine & Biology, 2008, 53(17): 4777-4807.

    Sidky E Y, Pan X C. Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization[J]. Physics in Medicine & Biology, 2008, 53(17): 4777-4807.

[13] 马继明, 张建奇, 宋顾周, 等. 全变分约束迭代滤波反投影CT重建[J]. 光学学报, 2015, 35(2): 0234002.

    马继明, 张建奇, 宋顾周, 等. 全变分约束迭代滤波反投影CT重建[J]. 光学学报, 2015, 35(2): 0234002.

    Ma J M, Zhang J Q, Song G Z, et al. Total variation constrained iterative filtered backprojection CT reconstruction method[J]. Acta Optica Sinica, 2015, 32(2): 0234002.

    Ma J M, Zhang J Q, Song G Z, et al. Total variation constrained iterative filtered backprojection CT reconstruction method[J]. Acta Optica Sinica, 2015, 32(2): 0234002.

[14] Jia X, Lou Y F, Li R J, et al. GPU-based fast cone beam CT reconstruction from undersampled and noisy projection data via total variation[J]. Medical Physics, 2010, 37(4): 1757-1760.

    Jia X, Lou Y F, Li R J, et al. GPU-based fast cone beam CT reconstruction from undersampled and noisy projection data via total variation[J]. Medical Physics, 2010, 37(4): 1757-1760.

[15] Liu R, Luo Y, Yu H Y. GPU-based acceleration for interior tomography[J]. IEEE Access, 2014, 2: 757-770.

    Liu R, Luo Y, Yu H Y. GPU-based acceleration for interior tomography[J]. IEEE Access, 2014, 2: 757-770.

[16] Li B, Tian Z, Zhou L X, et al. Employing a novel consensus optimization strategy to achieve iterative cone beam CT reconstruction on a multi-GPU platform[J]. Medical Physics, 2016, 40(6): 3344-3345.

    Li B, Tian Z, Zhou L X, et al. Employing a novel consensus optimization strategy to achieve iterative cone beam CT reconstruction on a multi-GPU platform[J]. Medical Physics, 2016, 40(6): 3344-3345.

[17] Wang X Y, Yan H, Cervino L, et al. Iterative cone beam CT reconstruction on a multi-GPU platform[J]. Medical Physics, 2013, 40(6): 543.

    Wang X Y, Yan H, Cervino L, et al. Iterative cone beam CT reconstruction on a multi-GPU platform[J]. Medical Physics, 2013, 40(6): 543.

[18] FehringerA, LasserT, ZanetteI, et al. A versatile tomographic forward-and back-projection approach on multi-GPUs[C]. SPIE, 2014, 9034: 90344F.

    FehringerA, LasserT, ZanetteI, et al. A versatile tomographic forward-and back-projection approach on multi-GPUs[C]. SPIE, 2014, 9034: 90344F.

[19] Peng Z M, Xu Y Y, Yan M, et al. ARock: An algorithmic framework for asynchronous parallel coordinate updates[J]. SIAM Journal on Scientific Computing, 2016, 38(5): A2851-A2879.

    Peng Z M, Xu Y Y, Yan M, et al. ARock: An algorithmic framework for asynchronous parallel coordinate updates[J]. SIAM Journal on Scientific Computing, 2016, 38(5): A2851-A2879.

路万里, 蔡爱龙, 郑治中, 王林元, 李磊, 闫镔. 基于总变分最小化模型的异步并行GPU加速算法[J]. 光学学报, 2018, 38(4): 0411004. Wanli Lu, Ailong Cai, Zhizhong Zheng, Linyuan Wang, Lei Li, Bin Yan. Asynchronous Parallel GPU Acceleration Method Based on Total Variation Minimization Model[J]. Acta Optica Sinica, 2018, 38(4): 0411004.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!