半导体光电, 2020, 41 (2): 164, 网络出版: 2020-06-17   

基于碳管/石墨烯/GaAs双异质结自驱动的近红外光电探测器

Self-powered Near-infrared Photodetector Based on Single-walled Carbon Nanotube/Graphene/GaAs Double Heterojunctions
作者单位
上海交通大学 电子信息与电气工程学院 薄膜与微细技术教育部重点实验室, 上海 200240
引用该论文

陶泽军, 霍婷婷, 尹欢, 苏言杰. 基于碳管/石墨烯/GaAs双异质结自驱动的近红外光电探测器[J]. 半导体光电, 2020, 41(2): 164.

TAO Zejun, HUO Tingting, YIN Huan, SU Yanjie. Self-powered Near-infrared Photodetector Based on Single-walled Carbon Nanotube/Graphene/GaAs Double Heterojunctions[J]. Semiconductor Optoelectronics, 2020, 41(2): 164.

参考文献

[1] Lim E L, Yap C C, Jumali M H H, et al. A mini review: Can graphene be a novel material for perovskite solar cell applications?[J]. Nano-Micro Lett., 2018, 10: 27.

[2] Li X, Tao L, Chen Z, et al. Graphene and related two-dimensional materials: Structure-property relationships for electronics and optoelectronics[J]. Appl. Phys. Rev., 2017, 4: 021306.

[3] Song Y, Fang W, Brenes R, et al. Challenges and opportunities for graphene as transparent conductors in optoelectronics[J]. Nano Today, 2015, 10: 681-700.

[4] Liu C H, Chang Y C, Norris T B, et al. Graphene photodetectors with ultra-broadband and high responsivity at room temperature[J]. Nat. Nanotech., 2014, 9: 273-278.

[5] Lin S, Lu Y, Xu J, et al. High performance graphene/semiconductor van der waals heterostructure optoelectronic devices[J]. Nano Energy, 2017, 40: 122-148.

[6] Bartolomeo A D. Graphene Schottky diodes: An experimental review of the rectifying graphene/semiconductor heterojunction[J]. Phys. Rep., 2016, 606: 1-58.

[7] Long M S, Wang P, Fang H, et al. Progress, challenges and opportunities for 2D material based photodetectors[J]. Adv. Funct. Mater., 2018: 1803807.

[8] 蔡葆昉. 基于单壁碳纳米管/石墨烯van der waals结的高性能纳米传感器研究[D].上海: 上海交通大学, 2019.

    Cai Baofang. High performance nanosensors based on single-walled carbon nanotubes/graphene van der waals junction[D]. Shanghai: Shanghai Jiaotong University, 2019.

[9] Jie W, Zheng F, Hao J. Graphene/gallium arsenide-based Schottky junction solar cells[J]. Appl. Phys. Lett., 2013, 103: 233111.

[10] Lin S S, Wu Z Q, Li X Q, et al. Stable 16.2% efficient surface plasmon-enhanced graphene/GaAs heterostructure solar cell[J]. Adv. Energy. Mater., 2016, 6: 1600822.

[11] Zeng L H, Lin S H, Li Z J, et al. Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction[J]. Adv. Funct. Mater., 2018, 28: 1705970.

[12] Luo L B, Hu H, Wang X H, et al. A graphene/GaAs near-infrared photodetector enabled by interfacial passivation with fast response and high sensitivity[J]. J. Mater. Chem., 2015, C3: 4723-4728.

[13] Lu Y, Feng S, Wu Z, et al. Broadband surface plasmon resonance enhanced self-powered graphene/GaAs photodetector with ultrahigh detectivity[J]. Nano Energy, 2018, 47: 140-149.

陶泽军, 霍婷婷, 尹欢, 苏言杰. 基于碳管/石墨烯/GaAs双异质结自驱动的近红外光电探测器[J]. 半导体光电, 2020, 41(2): 164. TAO Zejun, HUO Tingting, YIN Huan, SU Yanjie. Self-powered Near-infrared Photodetector Based on Single-walled Carbon Nanotube/Graphene/GaAs Double Heterojunctions[J]. Semiconductor Optoelectronics, 2020, 41(2): 164.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!