光电工程, 2019, 46 (12): 190046, 网络出版: 2020-01-09   

微流体衍射相位显微成像及其在寄生虫测量中的应用

Microfluidic diffraction phase microscopy and its application in parasites measurement
作者单位
1 中国科学技术大学纳米技术与纳米仿生学院,安徽 合肥 230026
2 中国科学院苏州纳米技术与纳米仿生研究所,江苏 苏州 215600
摘要
本文提出了一种将衍射相位显微技术与微流体芯片相结合的方法对水源性寄生虫进行定量测量。结合干涉技术与光学显微镜搭建了衍射相位显微成像系统,实现对寄生虫的高灵敏度实时测量。基于光刻工艺,设计和制作了U型捕获结构双层微流体芯片,实现高通量的单个寄生虫捕获。将与聚二甲基硅氧烷(PDMS)折射率相同的聚蔗糖水溶液通入微腔,消除U型捕获结构边缘衍射在相位成像时产生的显著干扰噪声。利用不同直径的标准聚苯乙烯微球验证了该系统的准确性,最大相位值误差不超过3%。采用上述系统测量了100个贾第鞭毛虫包囊和100个隐孢子虫卵囊,然后从干涉图中重构出两虫的相位图。通过对定量相位图的分析得出两虫的形态学参数与定量的光体积差分布,定量的数据为了解其生理特性提供了依据。微流体衍射相位显微成像系统结构简单,稳定性好,测量精度高,在对单个微生物进行实时监测和无标记定量研究方面具有巨大的潜力。
Abstract
This paper proposes a method of using diffraction phase microscopy combined with microfluidic chip to quantitatively measure waterborne parasites. A diffraction phase microscopy system is built up by combining interferometry with optical microscope to achieve high sensitivity real-time measurement of parasites. Based on soft lithographic techniques, a double-layered microfluidic chip with U-shaped trapping structures is designed and fabricated for high throughput single parasites trapping. Ficoll solution with the same refractive index as polydimethylsiloxane (PDMS) is introduced into the microfluidic chamber to eliminate significant artifacts in phase imaging originating from diffraction at the edges of trapping structures. The accuracy of the system is verified using standard polystyrene microspheres of different diameters, and the error of maximum phase shift does not exceed 3%. 100 Giardia Lamblia (G. Lamblia) cysts and 100 Cryptosporidium Parvum (C. Parvum) oocysts are measured using this system. The phase maps of the parasites are obtained from the interferograms. The morphological parameters and quantitative optical volume difference distribution of the two kind of waterborne parasites are obtained by analyzing the quantitative phase maps. Quantitative data provides the basis for understanding their physiological characteristics. The microfluidic diffraction phase microscopy system has simple structure, good stability and high measurement accuracy, and has great potential for real-time monitoring and label-free quantitative studies of single microorganism.
参考文献

[1] Marshall M M, Naumovitz D, Ortega Y, et al. Waterborne protozoan pathogens[J]. Clinical Microbiology Reviews, 1997, 10(1): 67?85.

[2] Savioli L, Smith H, Thompson A. Giardia and Cryptosporidium join the ‘Neglected Diseases Initiative’[J]. Trends in Parasitology, 2006, 22(5): 203?208.

[3] EPA. Technologies and techniques for early warning systems to monitor and evaluate drinking water quality: a state-of-the-art review[R]. Washington, DC, USA: Environmental Protection Agency, 2005.

[4] Hoebe R A, van Oven C H, Gadella Jr T W J, et al. Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging[J]. Nature Biotechnology, 2007, 25(2): 249?253.

[5] Guy R A, Payment P, Krull U J, et al. Real-time PCR for quantification of giardia and Cryptosporidium in environmental water samples and sewage[J]. Applied and Environmental Microbiology, 2003, 69(9): 5178?5185.

[6] Sadaka H A, Gaafar M R, Mady R F, et al. Evaluation of ImmunoCard STAT test and ELISA versus light microscopy in diagnosis of giardiasis and cryptosporidiosis[J]. Parasitology Research, 2015, 114(8): 2853?2863.

[7] Park Y K, Depeursinge C, Popescu G. Quantitative phase imaging in biomedicine[J]. Nature Photonics, 2018, 12(10): 578?589.

[8] Ikeda T, Popescu G, Dasari R R, et al. Hilbert phase microscopy for investigating fast dynamics in transparent systems[J]. Optics Letters, 2005, 30(10): 1165?1167.

[9] Popescu G, Deflores L P, Vaughan J C, et al. Fourier phase microscopy for investigation of biological structures and dynamics[J]. Optics Letters, 2004, 29(21): 2503?2505.

[10] Paganin D, Nugent K A. Noninterferometric phase imaging with partially coherent light[J]. Physical Review Letters, 1998, 80(12): 2586?2589.

[11] Shaked N T, Zhu Y Z, Rinehart M T, et al. Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells[J]. Optics Express, 2009, 17(18): 15585?15591.

[12] Popescu G, Ikeda T, Dasari R R, et al. Diffraction phase microscopy for quantifying cell structure and dynamics[J]. Optics Letters, 2006, 31(6): 775?777.

[13] Park K, Millet L J, Kim N, et al. Measurement of adherent cell mass and growth[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(48): 20691?20696.

[14] Eldridge W J, Sheinfeld A, Rinehart M T, et al. Imaging deformation of adherent cells due to shear stress using quantitative phase imaging[J]. Optics Letters, 2016, 41(2): 352?355.

[15] 田鹏, 严伟, 李凡星, 等. 均匀球面波数字同轴全息生物显微方法[J]. 光电工程, 2019, 46(1): 180110.

    Tian P, Yan W, Li F X, et al. Biology microscopy using well-distributed sphere digital in-line holography[J]. Opto-Electronic Engineering, 2019, 46(1): 180110.

[16] Xiang W D, Yang P, Wang S, et al. Underwater image enhancement based on red channel weighted compensation and gamma correction model[J]. Opto-Electronic Advances, 2018, 1(10): 180024.

[17] Goldstein R M, Zebker H A, Werner C L. Satellite radar interferometry: two-dimensional phase unwrapping[J]. Radio Science, 1988, 23(4): 713?720.

[18] GE Healthcare. Ficoll PM70, Ficoll PM400, Data File 18–1158-27 AB[EB/OL]. https://cdn.gelifesciences.com/dmm3- bwsv3/AssetStream.aspx?mediaformatid=10061&destinationid=10016&assetid=12817.

[19] Low F C, Wiemken A. Fractionation of Hevea brasiliensis latex on ficoll density gradients[J]. Phytochemistry, 1984, 23(4): 747?750.

[20] Zheng C, Zhou R J, Kuang C F, et al. Digital micromirror device-based common-path quantitative phase imaging[J]. Optics Letters, 2017, 42(7): 1448?1451.

[21] Thompson R C A. The zoonotic significance and molecular epidemiology of Giardia and giardiasis[J]. Veterinary Parasitology, 2004, 126(1?2): 15?35.

[22] Smith H V, Nichols R A B. Cryptosporidium: detection in water and food[J]. Experimental Parasitology, 2010, 124(1): 61?79.

[23] Aknoun S, Savatier J, Bon P, et al. Living cell dry mass measurement using quantitative phase imaging with quadriwave lateral shearing interferometry: an accuracy and sensitivity discussion[J]. Journal of Biomedical Optics, 2015, 20(12): 126009.

顾鑫, 黄伟, 杨立梅, 李丰. 微流体衍射相位显微成像及其在寄生虫测量中的应用[J]. 光电工程, 2019, 46(12): 190046. Gu Xin, Huang Wei, Yang Limei, Li Feng. Microfluidic diffraction phase microscopy and its application in parasites measurement[J]. Opto-Electronic Engineering, 2019, 46(12): 190046.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!