光学学报, 2016, 36 (8): 0818002, 网络出版: 2016-08-18  

基于可编程LCD的莱茵伯格照明显微原理与系统设计

Theory and Systematic Design of Rheinberg Illumination Microscopy Based on Programmable LCD
林飞 1,2,*张闻文 2范瑶 1,2左超 1,2陈钱 2
作者单位
1 南京理工大学电子工程与光电技术学院智能计算成像实验室, 江苏 南京 210094
2 南京理工大学电子工程与光电技术学院江苏省光谱成像与智能感知重点实验室, 江苏 南京 210094
摘要
莱茵伯格照明是显微成像中光学染色的一种方式,照明光源通过特殊的滤色片使样品与背景产生色差,有效提高无色透明样品的对比度。基于可编程液晶显示器(LCD)的莱茵伯格照明显微系统将传统显微镜中聚光镜光阑替换成低成本的薄膜晶体管液晶显示器只需改变其照明图案,就能够实现明场、暗场、相位差、倾斜成像以及莱茵伯格照明等多种显微成像功能。并且由于LCD面板的颜色与光强灵活可调,系统可以衍生出彩虹暗场、彩虹相差等全新的光学染色方法。采用该系统对未染色的肺癌细胞、纺织纤维、小鼠肾脏切片等无色透明样品进行显微观察,验证了系统的多样性与可靠性。
Abstract
Rheinberg illumination is an optical staining technique for microscopic imaging. The light passing through special filters provides chromatism between the specimen and background, which improves the contrast of colorless and transparent samples effectively. Rheinberg illumination microscopy based on programmable liquid crystal display (LCD) replaces the condenser diaphragm of conventional microscope with low-cost thin film transistor liquid crystal display. By displaying different patterns, numerous microscopy imaging modalities, such as bright field, dark field, phase contrast, oblique illumination and Rheinberg illuminations can be realized. Furthermore, because it is easy to modulate both the color and the intensity of the LCD panel, the system derives completely new methods for optical staining, such as iridescent dark-field and iridescent phase-contrast imaging. The versatility and effectiveness of the system are demonstrated by microexamination of several transparent colorless specimens, such as unstained lung cancer cells, textile fibers, and slice of mouse kidney.
参考文献

[1] Mertz J. Introduction to optical microscopy[M]. Boston: Roberts and Company Publishers, 2010.

[2] Rheinberg J. On an addition to the methods of microscopical research, by a new way optically producing color-contrast between an object and its background, or between definite parts of the object itself[J]. J R Microsc Soc, 1896, 16(4): 373-388.

[3] Samson E C, Blanca C M. Dynamic contrast enhancement in widefield microscopy using projector-generated illumination patterns[J]. New J Phys, 2007, 9(10): 363.

[4] Warber M, Zwick S, Hasler M, et al. SLM-based phase-contrast filtering for single and multiple image acquisition[J]. SPIE, 2009, 7442: 74420E.

[5] Maurer C, Jesacher A, Bernet S, et al. What spatial light modulators can do for optical microscopy[J]. Laser & Photon Rev, 2011, 5(1): 81-101.

[6] Steiger R, Bernet S, Ritsch Marte M. SLM-based off-axis Fourier filtering in microscopy with white light illumination[J]. Opt Express, 2012, 20(14): 15377-15384.

[7] 杜艳丽, 马凤英, 弓巧侠, 等. 基于空间光调制器的光学显微成像技术[J]. 激光与光电子学进展, 2014, 51(2): 020002.

    Du Yanli, Ma Fengying, Gong Qiaoxia, et al. Optical microscopic imaging technology based on spatial light modulator[J]. Laser & Optoelectronics Progress, 2014, 51(2): 020002.

[8] 石侠, 朱五凤, 袁斌, 等. 非相干光照明数字全息实验研究[J]. 中国激光, 2015, 42(12): 1209003.

    Shi Xia, Zhu Wufeng, Yuan Bin, et al. Experimental study of the incoherent digital holography[J]. Chinese J Lasers, 2015, 42(12): 1209003.

[9] Zheng G, Kolner C, Yang C. Microscopy refocusing and dark-field imaging by using asimple LED array[J]. Opt Lett, 2011, 36(20): 3987-3989.

[10] Liu Z, Tian L, Liu S, et al. Real-time brightfield, darkfield, and phase contrast imaging in a light-emitting diode array microscope[J]. J Biomed Opt, 2014, 19(10): 106002.

[11] Webb K F. Condenser-free contrast methods for transmitted-light microscopy[J]. J Microsc, 2015, 257(1): 8-22.

[12] 徐超, 高淑梅, 苏宙平, 等. 一种基于LED扩展光源的均匀照明设计新方法[J]. 激光与光电子学进展, 2014, 51(2): 022203.

    Xu Chao, Gao Shumei, Su Zhouping, et al. A new optical design method of uniform illumination based on extended LED source[J]. Laser & Optoelectronics Progress, 2014, 51(2): 022203.

[13] 郝剑, 荆雷, 王尧, 等. 阵列型紫外LED匀光照明系统设计[J]. 光学学报, 2015, 35(10): 1022003.

    Hao Jian, Jing Lei, Wang Yao, et al. Design of uniform illumination for array LED[J]. Acta Optica Sinica, 2015, 35(10): 1022003.

[14] Zuo C, Sun J, Zhang J, et al. Lensless phase microscopy and diffraction tomography with multi-angle and multi-wavelength illuminations using a LED matrix[J]. Opt Express, 2015, 23(11): 14314-14328.

[15] Guo K K, Bian Z C, Dong S Y, et al. Microscopy illumination engineering using a low-cost liquid crystal display[J]. Biomedical Optics Express, 2015, 6(2): 574-579.

[16] Zuo C, Sun J S, Feng S J, et al. Programmable colored illumination microscopy (PCIM): A practical and flexible optical staining approach for microscopic contrast enhancement[J]. Optics and Lasers in Engineering, 2016, 78(2): 35-47.

[17] Zuo C, Sun J S, Feng S J, et al. Programmable aperture microscopy: A computational method for multi-modal phase contrast and light field imaging[J]. Optics and Lasers in Engineering, 2016, 80: 24-31.

林飞, 张闻文, 范瑶, 左超, 陈钱. 基于可编程LCD的莱茵伯格照明显微原理与系统设计[J]. 光学学报, 2016, 36(8): 0818002. Lin Fei, Zhang Wenwen, Fan Yao, Zuo Chao, Chen Qian. Theory and Systematic Design of Rheinberg Illumination Microscopy Based on Programmable LCD[J]. Acta Optica Sinica, 2016, 36(8): 0818002.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!