中国激光, 2017, 44 (6): 0602006, 网络出版: 2017-06-08   

半导体激光熔覆新型Co基合金耐擦伤性机制

Abrasion Resistance Mechanism of New Co-Based Alloy by Diode Laser Cladding
作者单位
1 浙江工业大学激光先进制造研究院, 浙江 杭州 310014
2 浙江省高端激光制造装备协同创新中心, 浙江 杭州 310014
3 博雷(中国)控制系统有限公司, 浙江 杭州 311231
摘要
在316不锈钢表面进行激光熔覆Stellite 3、Stellite 21与新型Co基合金(Co-3)试验, 分析了熔覆层的显微组织及相成分, 研究了硬度分布和耐擦伤机理。试验结果表明, Co-3显微组织均匀、致密, 无裂纹与气孔, 其强化相主要为(Co,W)3C、Cr23C6、Cr7C3和Co3Mo。熔覆层的平均显微硬度约为624 HV0.2, 较基体提高3倍以上。Co-3的耐擦伤性能明显优于316基体的, 在载荷为0~150 N的情况下, 当划痕长度s≤3.3 mm时, 擦伤机理主要是塑性变形; 当划痕长度3.3 mm<s≤6.9 mm时, 擦伤机理主要是塑性变形引起的晶粒滑移与微裂纹形成; 当划痕长度s>6.9 mm时, 擦伤机理主要是裂纹扩展与塑性去除。
Abstract
Stellite 3, Stellite 21 and new Co-based alloy (Co-3) coatings are prepared on the 316 stainless steel surface by laser cladding. The microstructure and phase composition of the cladding layers are analysed and the microhardness distribution and abrasion resistance mechanism are also studied. The experimental results show that the microstructure of the Co-3 is homogeneous, compact, and without cracks and cavity, where the main phases consist of (Co,W)3C, Cr23C6, Cr7C3, and Co3Mo. The average microhardness of the cladding layer is about 624 HV0.2, which is more than 3 times higher than that of the substrate. The abrasion resistance performance of Co-3 is superior to that of the 316 substrate. Under the load of 0~150 N condition, when the scratching length s≤3.3 mm, the main scratch mechanism is plastic deformation; when the scratching length 3.3<s≤6.9 mm, the main scratch mechanism is grain sliding and crack formation caused by plastic deformation; when the scratching length s>6.9 mm, the main scratch mechanism is crack propagation and plastic removal.
参考文献

[1] 陆世英. 不锈钢概论[M]. 北京: 化学工业出版社, 2013: 80-89.

    Lu Shiying. Introduction to stainless steel[M]. Beijing: Chemical Industry Press, 2013: 80-89.

[2] 林 晖, 王 静. 耐磨阀门在煤制油化工装置的应用与改进要求[J]. 通用机械, 2012(8): 36-38.

    Lin Hui, Wang Jing. Application and improvement of wear resistant valve in coal liquefaction equipment[J]. Universal Machine, 2012(8): 36-38.

[3] 高清宝. 阀门堆焊技术[M]. 北京: 机械工业出版社, 1994: 37-42.

    Gao Qingbao. Valve surfacing technology[M]. Beijing: China Machine Press, 1994: 37-42.

[4] 林 晖. 现代煤化工对耐磨阀门的要求[J]. 流体机械, 2013, 41(7): 49-52.

    Lin Hui. Requirements of modern coal-to-chemicals to wear-resistance valve[J]. Fluid Machinery, 2013, 41(7): 49-52.

[5] 姚建华, 李传康. 激光表面强化和再制造技术的研究与应用进展[J]. 电焊机, 2012, 42(5): 15-19.

    Yao Jianhua, Li Chuankang. Research and application of laser surface strengthening and remanufacturing technology[J]. Electric Welding Machine, 2012, 42(5): 15-19.

[6] Xu G J, Kutsuna M, Liu Z J. Comparison between diode laser and TIG cladding of Co-based alloys on the SU403 stainless steel[J]. Surface and Coating Technology, 2006, 201(3-4): 1138-1144.

[7] 张晓东, 董世运, 徐滨士, 等. St6钴基合金激光熔覆层显微组织及冲击磨料磨损性能[J]. 应用激光, 2011, 31(1): 82-85.

    Zhang Xiaodong, Dong Shiyun, Xu Binshi, et al. Microstructure and impact abrasive wear resistance of the St6 cobalt-based alloy laser cladding layer[J]. Applied Laser, 2011, 31(1): 82-85.

[8] 李 闯, 刘洪喜, 张晓伟, 等. 40Cr刀具钢表面激光熔覆钴基碳化物复合涂层的组织与性能[J]. 中国激光, 2015, 42(11): 1103002.

    Li Chuang, Liu Hongxi, Zhang Xiaowei, et al. Microstructure and property of Co-based carbide composite coating fabricated by laser cladding on 40Cr tool steel surface[J]. Chinese J Lasers, 2015, 42(11): 1103002.

[9] 李祉宏, 杨理京, 李 波, 等. 超音速激光沉积WC/Stellite 6复合涂层显微组织特征的研究[J]. 中国激光, 2015, 42(11): 1106002.

    Li Zhihong, Yang Lijing, Li Bo, et al. Microstructural characteristics of WC/Stellite 6 composite coating prepared by supersonic laser deposition[J]. Chinese J Lasers, 2015, 42(11): 1106002.

[10] Kapoor S, Liu R, Wu X J, et al. Microstructure and wear resistance relations of Stellite alloys[J]. International Journal of Advanced Materials Sciences, 2013, 4(3): 231-48.

[11] Alimardani M, Fallah V, Khajepour A, et al. The effect of localized dynamic surface preheating in laser cladding of Stellite 1[J]. Surface and Coatings Technology, 2010, 204(23): 3911-3919.

[12] 郭士锐, 董 刚, 叶 钟, 等. 激光再制造汽轮机转子的力学性能研究[J]. 动力工程学报, 2014, 34(8): 668-672.

    Guo Shirui, Dong Gang, Ye Zhong, et al. Research on mechanical properties of a steam turbine rotor remanufactured by laser cladding[J]. Journal of Chinese Society of Power Engineering, 2014, 34(8): 668-672.

[13] Kashani H, Amadeh A, Ghasemi H M. Room and high temperature wear behaviors of nickel and cobalt base weld overlay coatings on hot forging dies[J]. Wear, 2007, 262(7): 800-806.

[14] 章四琪, 黄劲松. 有色金属熔炼与铸锭[M]. 北京: 化学工业出版社, 2006: 144-146.

    Zhang Siqi, Huang Jingsong. Non-ferrous metal smelting and casting[M]. Beijing: Chemical Industry Press, 2006: 144-146.

[15] Huang P, Liu R, Wu X, et al. Effects of molybdenum content and heat treatment on mechanical and tribological properties of a low-carbon Stellite alloy[J]. Journal of Engineering Materials and Technology, 2007, 129(4): 523-529.

[16] 崔 巍, 陈静青, 陆 皓, 等. 晶界滑移对镍基合金失延开裂的影响[J]. 中国有色金属学报, 2013(5): 1269-1274.

    Cui Wei, Chen Jingqing, Lu Hao, et al. Influence of grain boundary sliding on ductility-dip cracking of Ni-based alloy[J]. The Chinese Journal of Nonferrous metals, 2013(5): 1269-1274.

吴国龙, 任方成, 姚建华, 毛伟, 李辉文. 半导体激光熔覆新型Co基合金耐擦伤性机制[J]. 中国激光, 2017, 44(6): 0602006. Wu Guolong, Ren Fangcheng, Yao Jianhua, Mao Wei, Li Huiwen. Abrasion Resistance Mechanism of New Co-Based Alloy by Diode Laser Cladding[J]. Chinese Journal of Lasers, 2017, 44(6): 0602006.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!