激光技术, 2020, 44 (1): 26, 网络出版: 2020-04-13  

Ni-Cr合金钎料激光钎焊金刚石表面金属化

Metallization of diamond surface by laser brazing with Ni-Cr alloy filler
作者单位
1 长沙理工大学 机械装备高性能智能制造湖南省重点实验室, 长沙 410114
2 湖南省热处理技术与装备工程技术研究中心, 株洲 412007
3 长沙理工大学 物理与电子科学学院, 长沙 410114
摘要
为了研究激光钎焊金刚石磨粒表面金属化生成物类别与形成机制, 采用第一性原理的密度泛函理论对常见碳化物进行了计算, 并采用Ni-Cr合金钎料, 借助光纤激光热源对金刚石磨粒进行了激光钎焊试验, 获得了Cr3C2和Cr7C3两种碳化物的结构和力学性能参量以及金刚石磨粒表面微结构和碳化物种类。结果表明, Cr3C2和Cr7C3两者都具有金属性, 且后者韧性更强; 激光钎焊得到的金刚石磨粒与Ni-Cr合金钎料界面冶金反应层厚度约为4μm, 金刚石磨粒表面碳化物主要为Cr3C2; 超声辅助激光钎焊得到的金刚石磨粒表面碳化物为Cr3C2和Cr7C3, 超声波高频振动可以促进界面反应, 进而生成含碳量低的Cr7C3。此研究结果对激光钎焊金刚石技术的发展具有指导意义。
Abstract
In order to study the types and formation mechanism of metallization products on diamond abrasive surface by laser brazing, the first-principle density functional theory was used to calculate the common carbides. Laser brazing experiments of diamond abrasives were carried out by means of Ni-Cr alloy filler metal and optical fiber laser heat source. The structure and mechanical properties of Cr3C2 and Cr7C3 carbides, as well as surface microstructures and carbide species of diamond abrasives, were obtained. The results show that both Cr3C2 and Cr7C3 are metallic, and the latter is tougher. The thickness of metallurgical reaction layer between diamond abrasives and Ni-Cr alloy brazing filler metal obtained by laser brazing is about 4μm. The surface carbides of diamond abrasives are mainly Cr3C2. The surface carbides of diamond abrasives obtained by ultrasonic-assisted laser brazing are Cr3C2 and Cr7C3. Ultrasound high frequency vibration can promote interfacial reaction, and then produce Cr7C3 with low carbon content. The research results have guiding significance for the development of laser brazing diamond technology.
参考文献

[1] YANG Z B, LIU A J, YANG R Y, et al. Interface microstructure and formation mechanism of diamond abrasive laser brazed with Ni-Cr solder[J]. Rare Metal Materials and Engineering, 2016, 45(5): 1152-1156.

[2] CHATTOPADHYAY A K, CHOLLET L, HINTERMANN H E. Experomental investigation on induction brazing of diamond with Ni-Cr hardfacing alloy under argon atmosphere[J]. Journal of Materials Science, 1991, 26(18): 5093-5100.

[3] CHATTOPADHYAY A K, CHOLLET L, HINTERMANN H E. On performance of brazed bonded monolayer diamond grinding wheel[J]. Annals of the CIRP, 1991, 40(1): 347-350.

[4] HUANG G Q, HUANG J R, ZHANG M Q, et al. Fundamental a-spects of ultrasonic assisted induction brazing of diamond onto 1045 steel[J]. Journal of Materials Processing Technology, 2018, 260: 123-136.

[5] LU J B, TANG F, MENG P, et al. Thermal damage analysis of Ni-Cr alloy vacuum brazed diamond[J]. Transactions of the China Welding Institution, 2010, 31(8): 25-28(in Chinese).

[6] REN H Zh, LI Q L, LEI W N. Research status of induction brazing technology for superhard abrasive[J]. Hot Working Technology, 2017, 46(13): 15-18(in Chinese).

[7] LIU T M, TANG X H, LI L B, et al. The experimental study on CO2 laser sintering of diamo-nd fine powder compact[J]. Laser Technology, 2006, 30(3): 244-247(in Chinese).

[8] HUANG S F, TSAI H L, TIAN S. Laser brazing of diamond grits using a Cu-15Ti-10Sn brazing alloy[J]. Materials Transactions, 2002, 43(10): 2604-2608.

[9] YANG Zh B, XU J H, LIU A J. Microstructure analysis of laser diamond grains interface[J].Transactions of the China Welding Institution, 2010, 31(10): 9-12(in Chinese).

[10] YANG Zh B, XU J H, FU Y C. Microstructure of laser brazed diamond grits[J]. Materials for Mechanical Engineering, 2007, 31(5): 17-19(in Chinese).

[11] YANG W H, TANG X H, QIN Y X, et al. High power CO2 laser brazing of diamond grits[J]. Chinese Journal of Lasers, 2007, 34(4): 569-573(in Chinese).

[12] HUANG J R, WANG Y D, HUANG G Q. Feasibility analysis of laser brazing diamond with Fe-based filler alloy[J]. Superhard Material Engineering, 2018, 30(3): 7-11(in Chinese).

[13] GUO J Y, CHEN Sh Y, HUANG G Q. Study of the technology of pulsed laser brazing of diamond[J]. Superhard Material Engineering, 2016, 28(3): 7-10(in Chinese).

[14] GUO X Q. Study on welding technology for diamond tools[J]. Diamond and Abrasives Engineering, 2007, 159(3): 40-42(in Chin-ese).

[15] ZHAO Y R. Process and mechanism of low temperature soldering of sapphire with Sn-based solder[D]. Harbin: Harbin Institute of Technology, 2017: 15-57(in Chinese).

[16] ZHAO W. Mechanism of ultrasonic assisted reaction epitaxy growth of sapphire and study of Al/Al2O3 composite seam brazing[D]. Harbin: Harbin Institute of Technology, 2016: 16-62(in Chinese).

[17] YAMAZAKI T, SUZUMURA A. Role of the reaction product in the solidification of Ag-Cu-Ti filler for brazing diamond[J]. Journal of Materials Science, 1998, 33(5): 1379-1384.

[18] YAMAZAKI T, SUZUMURA A. Relationship between X-ray diffraction and unidirectional solidification at interface between diamond and brazing filler metal[J]. Journal of Materials Science, 2000, 35(24): 6409-6416.

[19] YAMAZAKI T, SUZUMURA A. Reaction products at brazed interface between Ag-Cu-V filler metal and diamond(111)[J]. Journal of Materials Science, 2006, 41(19): 6409-6416.

[20] JIANG C. First-principles study of structural, elastic, and electronic properties of chromium carbides[J]. Applied Physics Letters, 2008, 92(4): 041909.

[21] PERDEW J P,BURKE K,WANG Y. Generalized gradient approximation for the exchange correlation hole of a many-electron system[J]. Physics Review, 1996, B54(23): 16533-16539.

[22] LI Y F, GAO Y M, XIAO B, et al. The electronic,mechanical properties and theoretical hardness of chromium carbides by first-principles calculations[J]. Journal of Alloys and Compounds, 2011, 509(17): 5242-5249.

[23] LU J B, ZHANG W X, ZHANG L, et al. Effect on microstructure for adding graphite to Ni-Cr alloy when brazing diamond abrasive in controlled atmosphere[J]. Journal of Mechanical Engineering, 2014, 50(4): 80-84(in Chinese).

[24] WANG P P, GUO H, ZHANG X M, et al. Interfacial reaction of dia-mond/copper composites[J]. Chinese Journal of Rare Metals, 2015, 39(4): 308-313(in Chinese).

[25] BAI L X, WU P F, LI Ch, et al. Ultrasonic cavitation in thin liquid layers[J]. Journal of Applied Acoustics, 2018, 37(5): 614-635(in Chinese).

李晋禹, 张明军, 胡永乐, 朱彬, 张健, 毛聪, 刘其城. Ni-Cr合金钎料激光钎焊金刚石表面金属化[J]. 激光技术, 2020, 44(1): 26. LI Jinyu, ZHANG Mingjun, HU Yongle, ZHU Bin, ZHANG Jian, MAO Cong, LIU Qicheng. Metallization of diamond surface by laser brazing with Ni-Cr alloy filler[J]. Laser Technology, 2020, 44(1): 26.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!