激光与光电子学进展, 2018, 55 (1): 011413, 网络出版: 2018-09-10   

激光冲击强化对电弧增材2319铝合金微观组织及残余应力的影响 下载: 1576次

Effect of Laser Shock Peening on Microstructure and Residual Stress of Wire-Arc Additive Manufactured 2319 Aluminum Alloy
作者单位
北京航空航天大学机械工程及自动化学院, 北京 100191
引用该论文

孙汝剑, 朱颖, 李刘合, 郭伟, 彭鹏. 激光冲击强化对电弧增材2319铝合金微观组织及残余应力的影响[J]. 激光与光电子学进展, 2018, 55(1): 011413.

Sun Rujian, Zhu Ying, Li Liuhe, Guo Wei, Peng Peng. Effect of Laser Shock Peening on Microstructure and Residual Stress of Wire-Arc Additive Manufactured 2319 Aluminum Alloy[J]. Laser & Optoelectronics Progress, 2018, 55(1): 011413.

参考文献

[1] Heinz A, Haszler A, Keidel C, et al. Recent development in aluminium alloys for aerospace applications[J]. Materials Science & Engineering A, 2000, 280(1): 102-107.

[2] 张瑞. 基于CMT的铝合金电弧增材制造(3D打印)技术及工艺研究[D]. 南京: 南京理工大学, 2016.

    ZhangR. Research on the aluminum alloy arc additive manufacturing (3D printing) technology and process based on the CMT[D]. Nanjing: Nanjing University of Science & Technology, 2016.

[3] 卢秉恒, 李涤尘. 3D打印)技术发展[J]. 机械制造与自动化, 2013, 42(4): 1-4.

    Lu B H, Li D C. Development of the additive manufacturing (3D printing) technology[J]. Machine Building & Automation, 2013, 42(4): 1-4.

[4] Szost B A, Terzi S, Martina F, et al. A comparative study of additive manufacturing techniques: Residual stress and microstructural analysis of CLAD and WAAM printed Ti-6Al-4V components[J]. Materials & Design, 2016, 89: 559-567.

[5] Williams SW, MartinaF, Addison AC, et al. Wire + arc additive manufacturing[J]. Materials Science & Technology, 2015( 7): 641- 647.

[6] 从保强, 丁佳洛. CMT工艺对Al-Cu合金电弧增材制造气孔的影响[J]. 稀有金属材料与工程, 2014, 43(12): 3149-3153.

    Cong B Q, Ding J L. Influence of CMT process on porosity of wire arc additive manufactured Al-Cu alloy[J]. Rare Metal Materials and Engineering, 2014, 43(12): 3149-3153.

[7] Cong B Q, Ding J L, Williams S. Effect of arc mode in cold metal transfer process on porosity of additively manufactured Al-6.3%Cu alloy[J]. International Journal of Advanced Manufacturing Technology, 2015, 76(9/10/11/12): 1593-1606.

[8] Moat R J, Pinkerton A J, Li L, et al. Residual stresses in laser direct metal deposited Waspaloy[J]. Materials Science & Engineering A, 2011, 528(6): 2288-2298.

[9] Colegrove P A, Coules H E, Fairman J, et al. Microstructure and residual stress improvement in wire and arc additively manufactured parts through high-pressure rolling[J]. Journal of Materials Processing Technology, 2013, 213(10): 1782-1791.

[10] Montross C S, Wei T, Ye L, et al. Laser shock processing and its effects on microstructure and properties of metal alloys: A review[J]. International Journal of Fatigue, 2002, 24(10): 1021-1036.

[11] Liao Y L, Ye C, Cheng G J. A review: Warm laser shock peening and related laser processing technique[J]. Optics & Laser Technology, 2016, 78: 15-24.

[12] 李伟, 李应红, 何卫锋, 等. 激光冲击强化技术的发展和应用[J]. 激光与光电子学进展, 2008, 45(12): 15-19.

    Li W, Li Y H, He W F, et al. Development and application of laser shock processing[J]. Laser & Optoelectronics Progress, 2008, 45(12): 15-19.

[13] 乔红超, 高宇, 赵吉宾, 等. 激光冲击强化技术的研究进展[J]. 中国有色金属学报, 2015, 25(7): 1744-1755.

    Qiao H C, Gao Y, Zhao J B, et al. Research process of laser peening technology[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(7): 1744-1755.

[14] DingK, YeL. Laser shock peening: Performance and process simulation[M]. Cambridge: Woodhead Publishing Limited, 2006.

[15] Ye C H, Suslov S, Kim B J, et al. Fatigue performance improvement in AISI 4140 steel by dynamic strain aging and dynamic precipitation during warm laser shock peening[J]. Acta Materialia, 2011, 59(3): 1014-1025.

[16] Hu Y X, Yao Z Q, Hu J. 3-D FEM simulation of laser shock processing[J]. Surface & Coatings Technology, 2006, 201(3/4): 1426-1435.

[17] Lu J Z, Luo K Y, Zhang Y K, et al. Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts[J]. Acta Materialia, 2010, 58(11): 3984-3994.

[18] Rubio-González C, Ocaña J L, Gomez-Rosas G, et al. Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061-T6 aluminum alloy[J]. Materials Science & Engineering A, 2004, 386(1/2): 291-295.

[19] 孙浩, 朱颖, 郭伟, 等. 激光冲击强化对TC17钛合金残余应力及显微组织的影响[J]. 激光与光电子学进展, 2017, 54(4): 041405.

    Sun H, Zhu Y, Guo W, et al. Effect of laser shock peening on residual stress and microstructure of TC17 titanium alloy[J]. Laser & Optoelectronics Progress, 2017, 54(4): 041405.

[20] 孙汝剑, 朱颖, 郭伟, 等. 激光冲击强化对TC17表面形貌及残余应力场影响的有限元数值模拟研究[J]. 塑性工程学报, 2017, 24(1): 187-193.

    Sun R J, Zhu Y, Guo W, et al. Effect of laser shock processing on surface morphology and residual stress field of TC17 titanium alloy by FEM method[J]. Journal of Plasticity Engineering, 2017, 24(1): 187-193.

[21] Sun R J, Li L H, Zhu Y, et al. Dynamic response and residual stress fields of Ti6Al4V alloy under shock wave induced by laser shock peening[J]. Modelling and Simulation in Materials Science and Engineering, 2017, 25(6): 065016.

[22] 李玉琴, 孟长军, 王学德, 等. 激光冲击强化316L不锈钢焊接接头的耐腐蚀性能[J]. 激光与光电子学进展, 2017, 54(6): 061402.

    Li Y Q, Meng C J, Wang X D, et al. Corrosion resistance property of 316L stainless steel welding joints treated by laser shock peening[J]. Laser & Optoelectronics Progress, 2017, 54(6): 061402.

[23] 李东霖, 何卫锋, 游熙, 等. 激光冲击强化提高外物打伤TC4钛合金疲劳强度的试验研究[J]. 中国激光, 2016, 43(7): 0702006.

    Li D L, He W F, You X, et al. Experimental research on improving fatigue strength of wounded TC4 titanium alloy by laser shock peening[J]. Chinese Journal of Lasers, 2016, 43(7): 0702006.

[24] 刘月, 鲁金忠, 罗开玉, 等. 升温条件下激光冲击强化对工业纯钛拉伸性能和断口形貌的影响[J]. 中国激光, 2016, 43(9): 0902005.

    Liu Y, Lu J Z, Luo K Y, et al. Effect of laser shock processing on tensile property and fracture morphology of CP-Ti under elevated temperature condition[J]. Chinese Journal of Lasers, 2016, 43(9): 0902005.

[25] Kalentics N, Boillat E, Peyre P, et al. 3D laser shock peening——A new method for the 3D control of residual stresses in selective laser melting[J]. Materials & Design, 2017, 130: 350-356.

[26] Hall EO. Thedeformation and ageing of mild steel: II characteristics of the Lüders deformation[C]. Cambridge: Proceedings of the Physical Society, 1951, 64( 9): 742.

[27] Petch N J. Thecleavage strength of polycrystals[J]. The Journal of the Iron and Steel Institute, 1953, 173: 25-27.

[28] Armstrong R W. 60 years of Hall-Petch: Past to present nano-scale connections[J]. Materials Transactions, 2014, 55(1): 2-12.

[29] Lu J Z, Wu U, Sun G F, et al. Microstructural response and grain refinement mechanism of commercially pure titanium subjected to multiple laser shock peening impacts[J]. Acta Materialia, 2017, 127: 252-266.

孙汝剑, 朱颖, 李刘合, 郭伟, 彭鹏. 激光冲击强化对电弧增材2319铝合金微观组织及残余应力的影响[J]. 激光与光电子学进展, 2018, 55(1): 011413. Sun Rujian, Zhu Ying, Li Liuhe, Guo Wei, Peng Peng. Effect of Laser Shock Peening on Microstructure and Residual Stress of Wire-Arc Additive Manufactured 2319 Aluminum Alloy[J]. Laser & Optoelectronics Progress, 2018, 55(1): 011413.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!